forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.html
1161 lines (949 loc) · 79 KB
/
ops.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta name="robots" content="noindex">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchvision.ops — PyTorch 1.7.1 documentation</title>
<link rel="canonical" href="https://pytorch.org/vision/0.8/ops.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/jit.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/1.7.1/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/0.7.0/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/0.8.1/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/0.8/">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/elastic/">
<span class="dropdown-title">TorchElastic</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='http://pytorch.org/docs/versions.html'>1.7.1 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../notes/amp_examples.html">Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
</ul>
<p class="caption"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../amp.html">torch.cuda.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../__config__.html">torch.__config__</a></li>
</ul>
<p class="caption"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/elastic/">TorchElastic</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="http://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
<p class="caption"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/governance.html">PyTorch Governance</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/persons_of_interest.html">PyTorch Governance | Persons of Interest</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>torchvision.ops</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/torchvision/ops.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="torchvision-ops">
<h1>torchvision.ops<a class="headerlink" href="#torchvision-ops" title="Permalink to this headline">¶</a></h1>
<p><code class="xref py py-mod docutils literal notranslate"><span class="pre">torchvision.ops</span></code> implements operators that are specific for Computer Vision.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>All operators have native support for TorchScript.</p>
</div>
<dl class="function">
<dt id="torchvision.ops.nms">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">nms</code><span class="sig-paren">(</span><em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">scores: torch.Tensor</em>, <em class="sig-param">iou_threshold: float</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#nms"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.nms" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs non-maximum suppression (NMS) on the boxes according
to their intersection-over-union (IoU).</p>
<p>NMS iteratively removes lower scoring boxes which have an
IoU greater than iou_threshold with another (higher scoring)
box.</p>
<p>If multiple boxes have the exact same score and satisfy the IoU
criterion with respect to a reference box, the selected box is
not guaranteed to be the same between CPU and GPU. This is similar
to the behavior of argsort in PyTorch when repeated values are present.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em><em>)</em>) – boxes to perform NMS on. They
are expected to be in (x1, y1, x2, y2) format</p></li>
<li><p><strong>scores</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>]</em>) – scores for each one of the boxes</p></li>
<li><p><strong>iou_threshold</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – discards all overlapping
boxes with IoU > iou_threshold</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p><strong>keep</strong> – int64 tensor with the indices
of the elements that have been kept
by NMS, sorted in decreasing order of scores</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p><a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a></p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.batched_nms">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">batched_nms</code><span class="sig-paren">(</span><em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">scores: torch.Tensor</em>, <em class="sig-param">idxs: torch.Tensor</em>, <em class="sig-param">iou_threshold: float</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#batched_nms"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.batched_nms" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs non-maximum suppression in a batched fashion.</p>
<p>Each index value correspond to a category, and NMS
will not be applied between elements of different categories.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – boxes where NMS will be performed. They
are expected to be in (x1, y1, x2, y2) format</p></li>
<li><p><strong>scores</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>]</em>) – scores for each one of the boxes</p></li>
<li><p><strong>idxs</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>]</em>) – indices of the categories for each one of the boxes.</p></li>
<li><p><strong>iou_threshold</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – discards all overlapping boxes
with IoU > iou_threshold</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p><strong>keep</strong> – int64 tensor with the indices of
the elements that have been kept by NMS, sorted
in decreasing order of scores</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p><a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a></p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.remove_small_boxes">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">remove_small_boxes</code><span class="sig-paren">(</span><em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">min_size: float</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#remove_small_boxes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.remove_small_boxes" title="Permalink to this definition">¶</a></dt>
<dd><p>Remove boxes which contains at least one side smaller than min_size.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – boxes in (x1, y1, x2, y2) format</p></li>
<li><p><strong>min_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – minimum size</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p><dl class="simple">
<dt>indices of the boxes that have both sides</dt><dd><p>larger than min_size</p>
</dd>
</dl>
</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>keep (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a>[K])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.clip_boxes_to_image">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">clip_boxes_to_image</code><span class="sig-paren">(</span><em class="sig-param">boxes: torch.Tensor, size: Tuple[int, int]</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#clip_boxes_to_image"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.clip_boxes_to_image" title="Permalink to this definition">¶</a></dt>
<dd><p>Clip boxes so that they lie inside an image of size <cite>size</cite>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – boxes in (x1, y1, x2, y2) format</p></li>
<li><p><strong>size</strong> (<em>Tuple</em><em>[</em><em>height</em><em>, </em><em>width</em><em>]</em>) – size of the image</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>clipped_boxes (Tensor[N, 4])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.box_convert">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">box_convert</code><span class="sig-paren">(</span><em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">in_fmt: str</em>, <em class="sig-param">out_fmt: str</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#box_convert"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.box_convert" title="Permalink to this definition">¶</a></dt>
<dd><p>Converts boxes from given in_fmt to out_fmt.
Supported in_fmt and out_fmt are:</p>
<p>‘xyxy’: boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.</p>
<p>‘xywh’ : boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height.</p>
<p>‘cxcywh’ : boxes are represented via centre, width and height, cx, cy being center of box, w, h
being width and height.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – boxes which will be converted.</p></li>
<li><p><strong>in_fmt</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.9)"><em>str</em></a>) – Input format of given boxes. Supported formats are [‘xyxy’, ‘xywh’, ‘cxcywh’].</p></li>
<li><p><strong>out_fmt</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.9)"><em>str</em></a>) – Output format of given boxes. Supported formats are [‘xyxy’, ‘xywh’, ‘cxcywh’]</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Boxes into converted format.</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>boxes (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a>[N, 4])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.box_area">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">box_area</code><span class="sig-paren">(</span><em class="sig-param">boxes: torch.Tensor</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#box_area"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.box_area" title="Permalink to this definition">¶</a></dt>
<dd><p>Computes the area of a set of bounding boxes, which are specified by its
(x1, y1, x2, y2) coordinates.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – boxes for which the area will be computed. They
are expected to be in (x1, y1, x2, y2) format</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>area for each box</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>area (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a>[N])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.box_iou">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">box_iou</code><span class="sig-paren">(</span><em class="sig-param">boxes1: torch.Tensor</em>, <em class="sig-param">boxes2: torch.Tensor</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#box_iou"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.box_iou" title="Permalink to this definition">¶</a></dt>
<dd><p>Return intersection-over-union (Jaccard index) of boxes.</p>
<p>Both sets of boxes are expected to be in (x1, y1, x2, y2) format.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes1</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – </p></li>
<li><p><strong>boxes2</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>M</em><em>, </em><em>4</em><em>]</em>) – </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>iou (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a>[N, M])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.generalized_box_iou">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">generalized_box_iou</code><span class="sig-paren">(</span><em class="sig-param">boxes1: torch.Tensor</em>, <em class="sig-param">boxes2: torch.Tensor</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/boxes.html#generalized_box_iou"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.generalized_box_iou" title="Permalink to this definition">¶</a></dt>
<dd><p>Return generalized intersection-over-union (Jaccard index) of boxes.</p>
<p>Both sets of boxes are expected to be in (x1, y1, x2, y2) format.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>boxes1</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>4</em><em>]</em>) – </p></li>
<li><p><strong>boxes2</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>M</em><em>, </em><em>4</em><em>]</em>) – </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the NxM matrix containing the pairwise generalized_IoU values
for every element in boxes1 and boxes2</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>generalized_iou (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a>[N, M])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.roi_align">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">roi_align</code><span class="sig-paren">(</span><em class="sig-param">input: torch.Tensor</em>, <em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">output_size: None</em>, <em class="sig-param">spatial_scale: float = 1.0</em>, <em class="sig-param">sampling_ratio: int = -1</em>, <em class="sig-param">aligned: bool = False</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/roi_align.html#roi_align"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.roi_align" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs Region of Interest (RoI) Align operator described in Mask R-CNN</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>C</em><em>, </em><em>H</em><em>, </em><em>W</em><em>]</em>) – input tensor</p></li>
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>K</em><em>, </em><em>5</em><em>] or </em><em>List</em><em>[</em><a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>L</em><em>, </em><em>4</em><em>]</em><em>]</em>) – the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch</p></li>
<li><p><strong>output_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – the size of the output after the cropping
is performed, as (height, width)</p></li>
<li><p><strong>spatial_scale</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0</p></li>
<li><p><strong>sampling_ratio</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a>) – number of sampling points in the interpolation grid
used to compute the output value of each pooled output bin. If > 0,
then exactly sampling_ratio x sampling_ratio grid points are used. If
<= 0, then an adaptive number of grid points are used (computed as
ceil(roi_width / pooled_w), and likewise for height). Default: -1</p></li>
<li><p><strong>aligned</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.9)"><em>bool</em></a>) – If False, use the legacy implementation.
If True, pixel shift it by -0.5 for align more perfectly about two neighboring pixel indices.
This version in Detectron2</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>output (Tensor[K, C, output_size[0], output_size[1]])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.ps_roi_align">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">ps_roi_align</code><span class="sig-paren">(</span><em class="sig-param">input: torch.Tensor</em>, <em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">output_size: int</em>, <em class="sig-param">spatial_scale: float = 1.0</em>, <em class="sig-param">sampling_ratio: int = -1</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/ps_roi_align.html#ps_roi_align"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.ps_roi_align" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs Position-Sensitive Region of Interest (RoI) Align operator
mentioned in Light-Head R-CNN.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>C</em><em>, </em><em>H</em><em>, </em><em>W</em><em>]</em>) – input tensor</p></li>
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>K</em><em>, </em><em>5</em><em>] or </em><em>List</em><em>[</em><a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>L</em><em>, </em><em>4</em><em>]</em><em>]</em>) – the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch</p></li>
<li><p><strong>output_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – the size of the output after the cropping
is performed, as (height, width)</p></li>
<li><p><strong>spatial_scale</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0</p></li>
<li><p><strong>sampling_ratio</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a>) – number of sampling points in the interpolation grid
used to compute the output value of each pooled output bin. If > 0
then exactly sampling_ratio x sampling_ratio grid points are used.
If <= 0, then an adaptive number of grid points are used (computed as
ceil(roi_width / pooled_w), and likewise for height). Default: -1</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>output (Tensor[K, C, output_size[0], output_size[1]])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.roi_pool">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">roi_pool</code><span class="sig-paren">(</span><em class="sig-param">input: torch.Tensor</em>, <em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">output_size: None</em>, <em class="sig-param">spatial_scale: float = 1.0</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/roi_pool.html#roi_pool"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.roi_pool" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs Region of Interest (RoI) Pool operator described in Fast R-CNN</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>C</em><em>, </em><em>H</em><em>, </em><em>W</em><em>]</em>) – input tensor</p></li>
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>K</em><em>, </em><em>5</em><em>] or </em><em>List</em><em>[</em><a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>L</em><em>, </em><em>4</em><em>]</em><em>]</em>) – the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch</p></li>
<li><p><strong>output_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – the size of the output after the cropping
is performed, as (height, width)</p></li>
<li><p><strong>spatial_scale</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>output (Tensor[K, C, output_size[0], output_size[1]])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.ps_roi_pool">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">ps_roi_pool</code><span class="sig-paren">(</span><em class="sig-param">input: torch.Tensor</em>, <em class="sig-param">boxes: torch.Tensor</em>, <em class="sig-param">output_size: int</em>, <em class="sig-param">spatial_scale: float = 1.0</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/ps_roi_pool.html#ps_roi_pool"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.ps_roi_pool" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs Position-Sensitive Region of Interest (RoI) Pool operator
described in R-FCN</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>N</em><em>, </em><em>C</em><em>, </em><em>H</em><em>, </em><em>W</em><em>]</em>) – input tensor</p></li>
<li><p><strong>boxes</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>K</em><em>, </em><em>5</em><em>] or </em><em>List</em><em>[</em><a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>L</em><em>, </em><em>4</em><em>]</em><em>]</em>) – the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
then the first column should contain the batch index. If a list of Tensors
is passed, then each Tensor will correspond to the boxes for an element i
in a batch</p></li>
<li><p><strong>output_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – the size of the output after the cropping
is performed, as (height, width)</p></li>
<li><p><strong>spatial_scale</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.9)"><em>float</em></a>) – a scaling factor that maps the input coordinates to
the box coordinates. Default: 1.0</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>output (Tensor[K, C, output_size[0], output_size[1]])</p>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchvision.ops.deform_conv2d">
<code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">deform_conv2d</code><span class="sig-paren">(</span><em class="sig-param">input: torch.Tensor</em>, <em class="sig-param">offset: torch.Tensor</em>, <em class="sig-param">weight: torch.Tensor</em>, <em class="sig-param">bias: Optional[torch.Tensor] = None</em>, <em class="sig-param">stride: Tuple[int</em>, <em class="sig-param">int] = (1</em>, <em class="sig-param">1)</em>, <em class="sig-param">padding: Tuple[int</em>, <em class="sig-param">int] = (0</em>, <em class="sig-param">0)</em>, <em class="sig-param">dilation: Tuple[int</em>, <em class="sig-param">int] = (1</em>, <em class="sig-param">1)</em><span class="sig-paren">)</span> → torch.Tensor<a class="reference internal" href="../_modules/torchvision/ops/deform_conv.html#deform_conv2d"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.deform_conv2d" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs Deformable Convolution, described in Deformable Convolutional Networks</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>batch_size</em><em>, </em><em>in_channels</em><em>, </em><em>in_height</em><em>, </em><em>in_width</em><em>]</em>) – input tensor</p></li>
<li><p><strong>(Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,</strong> (<em>offset</em>) – out_height, out_width]): offsets to be applied for each position in the
convolution kernel.</p></li>
<li><p><strong>weight</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>out_channels</em><em>, </em><em>in_channels // groups</em><em>, </em><em>kernel_height</em><em>, </em><em>kernel_width</em><em>]</em>) – convolution weights, split into groups of size (in_channels // groups)</p></li>
<li><p><strong>bias</strong> (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a><em>[</em><em>out_channels</em><em>]</em>) – optional bias of shape (out_channels,). Default: None</p></li>
<li><p><strong>stride</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – distance between convolution centers. Default: 1</p></li>
<li><p><strong>padding</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – height/width of padding of zeroes around
each image. Default: 0</p></li>
<li><p><strong>dilation</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em> or </em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – the spacing between kernel elements. Default: 1</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>result of convolution</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>output (<a class="reference internal" href="../tensors.html#torch.Tensor" title="torch.Tensor">Tensor</a>[batch_sz, out_channels, out_h, out_w])</p>
</dd>
</dl>
<dl>
<dt>Examples::</dt><dd><div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="nb">input</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">kh</span><span class="p">,</span> <span class="n">kw</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span>
<span class="gp">>>> </span><span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">kh</span><span class="p">,</span> <span class="n">kw</span><span class="p">)</span>
<span class="gp">>>> </span><span class="c1"># offset should have the same spatial size as the output</span>
<span class="gp">>>> </span><span class="c1"># of the convolution. In this case, for an input of 10, stride of 1</span>
<span class="gp">>>> </span><span class="c1"># and kernel size of 3, without padding, the output size is 8</span>
<span class="gp">>>> </span><span class="n">offset</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">kh</span> <span class="o">*</span> <span class="n">kw</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">out</span> <span class="o">=</span> <span class="n">deform_conv2d</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">offset</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">out</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="gp">>>> </span><span class="c1"># returns</span>
<span class="gp">>>> </span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">8</span><span class="p">])</span>
</pre></div>
</div>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.RoIAlign">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">RoIAlign</code><span class="sig-paren">(</span><em class="sig-param">output_size: None</em>, <em class="sig-param">spatial_scale: float</em>, <em class="sig-param">sampling_ratio: int</em>, <em class="sig-param">aligned: bool = False</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/roi_align.html#RoIAlign"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.RoIAlign" title="Permalink to this definition">¶</a></dt>
<dd><p>See roi_align</p>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.PSRoIAlign">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">PSRoIAlign</code><span class="sig-paren">(</span><em class="sig-param">output_size: int</em>, <em class="sig-param">spatial_scale: float</em>, <em class="sig-param">sampling_ratio: int</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/ps_roi_align.html#PSRoIAlign"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.PSRoIAlign" title="Permalink to this definition">¶</a></dt>
<dd><p>See ps_roi_align</p>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.RoIPool">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">RoIPool</code><span class="sig-paren">(</span><em class="sig-param">output_size: None</em>, <em class="sig-param">spatial_scale: float</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/roi_pool.html#RoIPool"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.RoIPool" title="Permalink to this definition">¶</a></dt>
<dd><p>See roi_pool</p>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.PSRoIPool">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">PSRoIPool</code><span class="sig-paren">(</span><em class="sig-param">output_size: int</em>, <em class="sig-param">spatial_scale: float</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/ps_roi_pool.html#PSRoIPool"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.PSRoIPool" title="Permalink to this definition">¶</a></dt>
<dd><p>See ps_roi_pool</p>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.DeformConv2d">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">DeformConv2d</code><span class="sig-paren">(</span><em class="sig-param">in_channels: int</em>, <em class="sig-param">out_channels: int</em>, <em class="sig-param">kernel_size: int</em>, <em class="sig-param">stride: int = 1</em>, <em class="sig-param">padding: int = 0</em>, <em class="sig-param">dilation: int = 1</em>, <em class="sig-param">groups: int = 1</em>, <em class="sig-param">bias: bool = True</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/deform_conv.html#DeformConv2d"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.DeformConv2d" title="Permalink to this definition">¶</a></dt>
<dd><p>See deform_conv2d</p>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.MultiScaleRoIAlign">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">MultiScaleRoIAlign</code><span class="sig-paren">(</span><em class="sig-param">featmap_names: List[str], output_size: Union[int, Tuple[int], List[int]], sampling_ratio: int</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/poolers.html#MultiScaleRoIAlign"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.MultiScaleRoIAlign" title="Permalink to this definition">¶</a></dt>
<dd><p>Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.</p>
<p>It infers the scale of the pooling via the heuristics present in the FPN paper.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>featmap_names</strong> (<em>List</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.9)"><em>str</em></a><em>]</em>) – the names of the feature maps that will be used
for the pooling.</p></li>
<li><p><strong>output_size</strong> (<em>List</em><em>[</em><em>Tuple</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>, </em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em><em>] or </em><em>List</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – output size for the pooled region</p></li>
<li><p><strong>sampling_ratio</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a>) – sampling ratio for ROIAlign</p></li>
</ul>
</dd>
</dl>
<p>Examples:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">MultiScaleRoIAlign</span><span class="p">([</span><span class="s1">'feat1'</span><span class="p">,</span> <span class="s1">'feat3'</span><span class="p">],</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">i</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">i</span><span class="p">[</span><span class="s1">'feat1'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">i</span><span class="p">[</span><span class="s1">'feat2'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">)</span> <span class="c1"># this feature won't be used in the pooling</span>
<span class="gp">>>> </span><span class="n">i</span><span class="p">[</span><span class="s1">'feat3'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">)</span>
<span class="gp">>>> </span><span class="c1"># create some random bounding boxes</span>
<span class="gp">>>> </span><span class="n">boxes</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span> <span class="o">*</span> <span class="mi">256</span><span class="p">;</span> <span class="n">boxes</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:]</span> <span class="o">+=</span> <span class="n">boxes</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span>
<span class="gp">>>> </span><span class="c1"># original image size, before computing the feature maps</span>
<span class="gp">>>> </span><span class="n">image_sizes</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">512</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">output</span> <span class="o">=</span> <span class="n">m</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="p">[</span><span class="n">boxes</span><span class="p">],</span> <span class="n">image_sizes</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">6</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
</pre></div>
</div>
</dd></dl>
<dl class="class">
<dt id="torchvision.ops.FeaturePyramidNetwork">
<em class="property">class </em><code class="sig-prename descclassname">torchvision.ops.</code><code class="sig-name descname">FeaturePyramidNetwork</code><span class="sig-paren">(</span><em class="sig-param">in_channels_list: List[int], out_channels: int, extra_blocks: Optional[torchvision.ops.feature_pyramid_network.ExtraFPNBlock] = None</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchvision/ops/feature_pyramid_network.html#FeaturePyramidNetwork"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchvision.ops.FeaturePyramidNetwork" title="Permalink to this definition">¶</a></dt>
<dd><p>Module that adds a FPN from on top of a set of feature maps. This is based on
<a class="reference external" href="https://arxiv.org/abs/1612.03144">“Feature Pyramid Network for Object Detection”</a>.</p>
<p>The feature maps are currently supposed to be in increasing depth
order.</p>
<p>The input to the model is expected to be an OrderedDict[Tensor], containing
the feature maps on top of which the FPN will be added.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>in_channels_list</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.9)"><em>list</em></a><em>[</em><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a><em>]</em>) – number of channels for each feature map that
is passed to the module</p></li>
<li><p><strong>out_channels</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.9)"><em>int</em></a>) – number of channels of the FPN representation</p></li>
<li><p><strong>extra_blocks</strong> (<em>ExtraFPNBlock</em><em> or </em><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.9)"><em>None</em></a>) – if provided, extra operations will
be performed. It is expected to take the fpn features, the original
features and the names of the original features as input, and returns
a new list of feature maps and their corresponding names</p></li>
</ul>
</dd>
</dl>
<p>Examples:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">FeaturePyramidNetwork</span><span class="p">([</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">],</span> <span class="mi">5</span><span class="p">)</span>
<span class="gp">>>> </span><span class="c1"># get some dummy data</span>
<span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="s1">'feat0'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="s1">'feat2'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">x</span><span class="p">[</span><span class="s1">'feat3'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
<span class="gp">>>> </span><span class="c1"># compute the FPN on top of x</span>
<span class="gp">>>> </span><span class="n">output</span> <span class="o">=</span> <span class="n">m</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">print</span><span class="p">([(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">output</span><span class="o">.</span><span class="n">items</span><span class="p">()])</span>
<span class="gp">>>> </span><span class="c1"># returns</span>
<span class="gp">>>> </span> <span class="p">[(</span><span class="s1">'feat0'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">])),</span>
<span class="gp">>>> </span> <span class="p">(</span><span class="s1">'feat2'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">])),</span>
<span class="gp">>>> </span> <span class="p">(</span><span class="s1">'feat3'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">8</span><span class="p">]))]</span>
</pre></div>
</div>
</dd></dl>
</div>
</article>
</div>
<footer>
<hr>
<div role="contentinfo">
<p>
© Copyright 2019, Torch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">torchvision.ops</a></li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/language_data.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-90545585-1', 'auto');
ga('send', 'pageview');
</script>
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/1.7.1/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/1.7.1/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col follow-us-col">
<ul>
<li class="list-title">Stay Connected</li>
<li>
<div id="mc_embed_signup">
<form
action="https://twitter.us14.list-manage.com/subscribe/post?u=75419c71fe0a935e53dfa4a3f&id=91d0dccd39"
method="post"
id="mc-embedded-subscribe-form"
name="mc-embedded-subscribe-form"
class="email-subscribe-form validate"
target="_blank"
novalidate>
<div id="mc_embed_signup_scroll" class="email-subscribe-form-fields-wrapper">
<div class="mc-field-group">
<label for="mce-EMAIL" style="display:none;">Email Address</label>
<input type="email" value="" name="EMAIL" class="required email" id="mce-EMAIL" placeholder="Email Address">
</div>
<div id="mce-responses" class="clear">
<div class="response" id="mce-error-response" style="display:none"></div>
<div class="response" id="mce-success-response" style="display:none"></div>
</div> <!-- real people should not fill this in and expect good things - do not remove this or risk form bot signups-->