forked from nmslib/hnswlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sift_test.cpp
302 lines (269 loc) · 10.7 KB
/
sift_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include <iostream>
#include <fstream>
#include <queue>
#include <chrono>
#include "hnswlib/hnswlib.h"
#include <unordered_set>
using namespace std;
using namespace hnswlib;
/*
template <typename T>
void writeBinaryPOD(ostream& out, const T& podRef) {
out.write((char*)&podRef, sizeof(T));
}
template <typename T>
static void readBinaryPOD(istream& in, T& podRef) {
in.read((char*)&podRef, sizeof(T));
}*/
class StopW {
std::chrono::steady_clock::time_point time_begin;
public:
StopW() {
time_begin = std::chrono::steady_clock::now();
}
float getElapsedTimeMicro() {
std::chrono::steady_clock::time_point time_end = std::chrono::steady_clock::now();
return (std::chrono::duration_cast<std::chrono::microseconds>(time_end - time_begin).count());
}
void reset() {
time_begin = std::chrono::steady_clock::now();
}
};
void get_gt(float *mass, float *massQ, size_t vecsize, size_t qsize, L2Space &l2space, size_t vecdim,
vector<std::priority_queue<std::pair<float, labeltype >>> &answers, size_t k) {
BruteforceSearch<float> bs(&l2space, vecsize);
for (int i = 0; i < vecsize; i++) {
bs.addPoint((void *) (mass + vecdim * i), (size_t) i);
}
(vector<std::priority_queue<std::pair<float, labeltype >>>(qsize)).swap(answers);
//answers.swap(vector<std::priority_queue< std::pair< float, labeltype >>>(qsize));
for (int i = 0; i < qsize; i++) {
std::priority_queue<std::pair<float, labeltype >> gt = bs.searchKnn(massQ + vecdim * i, 10);
answers[i] = gt;
}
}
void
get_gt(unsigned int *massQA, float *massQ, float *mass, size_t vecsize, size_t qsize, L2Space &l2space, size_t vecdim,
vector<std::priority_queue<std::pair<float, labeltype >>> &answers, size_t k) {
//answers.swap(vector<std::priority_queue< std::pair< float, labeltype >>>(qsize));
(vector<std::priority_queue<std::pair<float, labeltype >>>(qsize)).swap(answers);
DISTFUNC<float> fstdistfunc_ = l2space.get_dist_func();
cout << qsize << "\n";
for (int i = 0; i < qsize; i++) {
for (int j = 0; j < k; j++) {
float other = fstdistfunc_(massQ + i * vecdim, mass + massQA[100 * i + j] * vecdim,
l2space.get_dist_func_param());
answers[i].emplace(other, massQA[100 * i + j]);
}
}
}
float test_approx(float *massQ, size_t vecsize, size_t qsize, HierarchicalNSW<float> &appr_alg, size_t vecdim,
vector<std::priority_queue<std::pair<float, labeltype >>> &answers, size_t k) {
size_t correct = 0;
size_t total = 0;
//#pragma omp parallel for
for (int i = 0; i < qsize; i++) {
std::priority_queue<std::pair<float, labeltype >> result = appr_alg.searchKnn(massQ + vecdim * i, 10);
std::priority_queue<std::pair<float, labeltype >> gt(answers[i]);
unordered_set<labeltype> g;
total += gt.size();
while (gt.size()) {
g.insert(gt.top().second);
gt.pop();
}
while (result.size()) {
if (g.find(result.top().second) != g.end())
correct++;
result.pop();
}
}
return 1.0f * correct / total;
}
void test_vs_recall(float *massQ, size_t vecsize, size_t qsize, HierarchicalNSW<float> &appr_alg, size_t vecdim,
vector<std::priority_queue<std::pair<float, labeltype >>> &answers, size_t k) {
//vector<size_t> efs = { 1,2,3,4,6,8,12,16,24,32,64,128,256,320 };// = ; { 23 };
vector<size_t> efs;
for (int i = 10; i < 30; i++) {
efs.push_back(i);
}
for (int i = 100; i < 2000; i += 100) {
efs.push_back(i);
}
/*for (int i = 300; i <600; i += 20) {
efs.push_back(i);
}*/
for (size_t ef : efs) {
appr_alg.setEf(ef);
StopW stopw = StopW();
float recall = test_approx(massQ, vecsize, qsize, appr_alg, vecdim, answers, k);
float time_us_per_query = stopw.getElapsedTimeMicro() / qsize;
cout << ef << "\t" << recall << "\t" << time_us_per_query << " us\n";
if (recall > 1.0) {
cout << recall << "\t" << time_us_per_query << " us\n";
break;
}
}
}
//void get_knn_quality(unsigned int *massA,size_t vecsize, size_t maxn, HierarchicalNSW<float> &appr_alg) {
// size_t total = 0;
// size_t correct = 0;
// for (int i = 0; i < vecsize; i++) {
// int *data = (int *)(appr_alg.linkList0_ + i * appr_alg.size_links_per_element0_);
// //cout << "numconn:" << *data<<"\n";
// tableint *datal = (tableint *)(data + 1);
// total += maxn;
// for (int j = 0; j < *data; j++) {
// labeltype conn = appr_alg.getExternalLabel(datal[j]);
// for (int k = 1; k <= maxn; k++) {
// if (massA[i * 100 + k] == conn) {
// correct++;
// break;
// }
// }
// }
// if (i % 1000 == 0) {
// cout << i << "\t" << correct << "\t" << total << "\n";
// correct = 0;
// total = 0;
// }
// }
//}
//#include "windows.h"
void sift_test() {
size_t vecsize = 980000;
size_t qsize = 20000;
//size_t qsize = 1000;
//size_t vecdim = 4;
size_t vecdim = 128;
float *mass = new float[vecsize * vecdim];
ifstream input("../../sift100k.bin", ios::binary);
//ifstream input("../../1M_d=4.bin", ios::binary);
input.read((char *) mass, vecsize * vecdim * sizeof(float));
input.close();
float *massQ = new float[qsize * vecdim];
//ifstream inputQ("../siftQ100k.bin", ios::binary);
ifstream inputQ("../../siftQ100k.bin", ios::binary);
//ifstream inputQ("../../1M_d=4q.bin", ios::binary);
inputQ.read((char *) massQ, qsize * vecdim * sizeof(float));
inputQ.close();
unsigned int *massQA = new unsigned int[qsize * 100];
//ifstream inputQA("../knnQA100k.bin", ios::binary);
ifstream inputQA("../../knnQA100k.bin", ios::binary);
//ifstream inputQA("../../1M_d=4qa.bin", ios::binary);
inputQA.read((char *) massQA, qsize * 100 * sizeof(int));
inputQA.close();
int maxn = 16;
/*unsigned int *massA = new unsigned int[vecsize * 100];
ifstream inputA("..\\..\\knngraph100k.bin", ios::binary);
inputA.read((char *)massA, vecsize * 100 * sizeof(int));
inputA.close();*/
L2Space l2space(vecdim);
//BruteforceSearch <float>bs(&l2space, vecsize);
//for(int tr=1;tr<9;tr++)
//#define LOAD_I
#ifdef LOAD_I
HierarchicalNSW<float> appr_alg(&l2space, "hnswlib_sift",false);
//HierarchicalNSW<float> appr_alg(&l2space, "D:/stuff/hnsw_lib/nmslib/similarity_search/release/temp",true);
//HierarchicalNSW<float> appr_alg(&l2space, "/mnt/d/stuff/hnsw_lib/nmslib/similarity_search/release/temp", true);
//appr_alg_saved.saveIndex("d:\\hnsw-index.bin");
//appr_alg_saved.loadIndex("d:\\hnsw-index2.bin", &l2space);
#else
//return;
//for (int u = 0; u < 10; u++) {
/* PROCESS_MEMORY_COUNTERS pmc;
GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
SIZE_T virtualMemUsedByMe = pmc.WorkingSetSize;
cout << virtualMemUsedByMe/1000/1000 << "\n";*/
//HierarchicalNSW<float> appr_alg(&l2space, vecsize, 6, 40);
HierarchicalNSW<float> appr_alg(&l2space, vecsize, 16, 200);
cout << "Building index\n";
StopW stopwb = StopW();
for (int i = 0; i < 1; i++) {
appr_alg.addPoint((void *) (mass + vecdim * i), (size_t) i);
}
#pragma omp parallel for
for (int i = 1; i < vecsize; i++) {
appr_alg.addPoint((void *) (mass + vecdim * i), (size_t) i);
}
/*GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
virtualMemUsedByMe = pmc.WorkingSetSize;
cout << virtualMemUsedByMe / 1000 / 1000 << "\n";*/
cout << "Index built, time=" << stopwb.getElapsedTimeMicro() * 1e-6 << "\n";
//appr_alg.saveIndex("hnswlib_sift");
//appr_alg.saveIndex("d:\\hnsw-index2.bin");
#endif
//get_knn_quality(massA, vecsize, maxn, appr_alg);
//return;
vector<std::priority_queue<std::pair<float, labeltype >>> answers;
size_t k = 10;
cout << "Loading gt\n";
//get_gt(mass, massQ, vecsize, qsize, l2space, vecdim, answers,k);
get_gt(massQA, massQ, mass, vecsize, qsize, l2space, vecdim, answers, k);
cout << "Loaded gt\n";
for (int i = 0; i < 1; i++)
test_vs_recall(massQ, vecsize, qsize, appr_alg, vecdim, answers, k);
//cout << "opt:\n";
//appr_alg.opt = true;
return;
//test_approx(mass, massQ, vecsize, qsize, appr_alg, vecdim, answers);
// //return;
//
// cout << appr_alg.maxlevel_ << "\n";
// //CHECK:
// //for (size_t io = 0; io < vecsize; io++) {
// // if (appr_alg.getExternalLabel(io) != io)
// // throw new exception("bad!");
// //}
// DISTFUNC<float> fstdistfunc_ = l2space.get_dist_func();
////#pragma omp parallel for
// for (int i = 0; i < vecsize; i++) {
// int *data = (int *)(appr_alg.linkList0_ + i * appr_alg.size_links_per_element0_);
// //cout << "numconn:" << *data<<"\n";
// tableint *datal = (tableint *)(data + 1);
//
// std::priority_queue< std::pair< float, tableint >> rez;
// unordered_set <tableint> g;
// for (int j = 0; j < *data; j++) {
// g.insert(datal[j]);
// }
// appr_alg.setEf(400);
// std::priority_queue< std::pair< float, tableint >> closest_elements = appr_alg.searchKnnInternal(appr_alg.getDataByInternalId(i), 17);
// while (closest_elements.size() > 0) {
// if (closest_elements.top().second != i) {
// g.insert(closest_elements.top().second);
// }
// closest_elements.pop();
// }
//
// for (tableint l : g) {
// float other = fstdistfunc_(appr_alg.getDataByInternalId(l), appr_alg.getDataByInternalId(i), l2space.get_dist_func_param());
// rez.emplace(other, l);
// }
// while (rez.size() > 32)
// rez.pop();
// int len = rez.size();
// *data = len;
// // check there are no loop connections created
// for (int j = 0; j < len; j++) {
// datal[j] = rez.top().second;
// if (datal[j] == i)
// throw new exception();
// rez.pop();
// }
//
// }
//
// //get_knn_quality(massA, vecsize, maxn, appr_alg);
// test_vs_recall( massQ, vecsize, qsize, appr_alg, vecdim, answers, k);
// /*test_vs_recall( massQ, vecsize, qsize, appr_alg, vecdim, answers, k);
// test_vs_recall( massQ, vecsize, qsize, appr_alg, vecdim, answers, k);
// test_vs_recall( massQ, vecsize, qsize, appr_alg, vecdim, answers, k);*/
//
//
//
//
//
// /*for(int i=0;i<1000;i++)
// cout << mass[i] << "\n";*/
// //("11", std::ios::binary);
}