forked from tcapelle/Diffusion-Models-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cifar10.py
34 lines (28 loc) · 875 Bytes
/
train_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from types import SimpleNamespace
import wandb
from ddpm_conditional import Diffusion
from utils import get_cifar
# Trains a conditional diffusion model on CIFAR10
# This is a very simple example, for more advanced training, see `ddp_conditional.py`
config = SimpleNamespace(
run_name = "cifar10_ddpm_conditional",
epochs = 25,
noise_steps=1000,
seed = 42,
batch_size = 128,
img_size = 32,
num_classes = 10,
dataset_path = get_cifar(img_size=32),
train_folder = "train",
val_folder = "test",
device = "cuda",
slice_size = 1,
do_validation = True,
fp16 = True,
log_every_epoch = 10,
num_workers=10,
lr = 5e-3)
diff = Diffusion(noise_steps=config.noise_steps , img_size=config.img_size)
with wandb.init(project="train_sd", group="train", config=config):
diff.prepare(config)
diff.fit(config)