forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
serializers.py
648 lines (495 loc) · 20.1 KB
/
serializers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
PySpark supports custom serializers for transferring data; this can improve
performance.
By default, PySpark uses :class:`PickleSerializer` to serialize objects using Python's
`cPickle` serializer, which can serialize nearly any Python object.
Other serializers, like :class:`MarshalSerializer`, support fewer datatypes but can be
faster.
Examples
--------
The serializer is chosen when creating :class:`SparkContext`:
>>> from pyspark.context import SparkContext
>>> from pyspark.serializers import MarshalSerializer
>>> sc = SparkContext('local', 'test', serializer=MarshalSerializer())
>>> sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> sc.stop()
PySpark serializes objects in batches; by default, the batch size is chosen based
on the size of objects and is also configurable by SparkContext's `batchSize`
parameter:
>>> sc = SparkContext('local', 'test', batchSize=2)
>>> rdd = sc.parallelize(range(16), 4).map(lambda x: x)
Behind the scenes, this creates a JavaRDD with four partitions, each of
which contains two batches of two objects:
>>> rdd.glom().collect()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> int(rdd._jrdd.count())
8
>>> sc.stop()
"""
import sys
from itertools import chain, product
import marshal
import struct
import types
import collections
import zlib
import itertools
import pickle
pickle_protocol = pickle.HIGHEST_PROTOCOL
from pyspark import cloudpickle
from pyspark.util import print_exec
__all__ = ["PickleSerializer", "MarshalSerializer", "UTF8Deserializer"]
class SpecialLengths(object):
END_OF_DATA_SECTION = -1
PYTHON_EXCEPTION_THROWN = -2
TIMING_DATA = -3
END_OF_STREAM = -4
NULL = -5
START_ARROW_STREAM = -6
class Serializer(object):
def dump_stream(self, iterator, stream):
"""
Serialize an iterator of objects to the output stream.
"""
raise NotImplementedError
def load_stream(self, stream):
"""
Return an iterator of deserialized objects from the input stream.
"""
raise NotImplementedError
def _load_stream_without_unbatching(self, stream):
"""
Return an iterator of deserialized batches (iterable) of objects from the input stream.
If the serializer does not operate on batches the default implementation returns an
iterator of single element lists.
"""
return map(lambda x: [x], self.load_stream(stream))
# Note: our notion of "equality" is that output generated by
# equal serializers can be deserialized using the same serializer.
# This default implementation handles the simple cases;
# subclasses should override __eq__ as appropriate.
def __eq__(self, other):
return isinstance(other, self.__class__) and self.__dict__ == other.__dict__
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
return "%s()" % self.__class__.__name__
def __hash__(self):
return hash(str(self))
class FramedSerializer(Serializer):
"""
Serializer that writes objects as a stream of (length, data) pairs,
where `length` is a 32-bit integer and data is `length` bytes.
"""
def dump_stream(self, iterator, stream):
for obj in iterator:
self._write_with_length(obj, stream)
def load_stream(self, stream):
while True:
try:
yield self._read_with_length(stream)
except EOFError:
return
def _write_with_length(self, obj, stream):
serialized = self.dumps(obj)
if serialized is None:
raise ValueError("serialized value should not be None")
if len(serialized) > (1 << 31):
raise ValueError("can not serialize object larger than 2G")
write_int(len(serialized), stream)
stream.write(serialized)
def _read_with_length(self, stream):
length = read_int(stream)
if length == SpecialLengths.END_OF_DATA_SECTION:
raise EOFError
elif length == SpecialLengths.NULL:
return None
obj = stream.read(length)
if len(obj) < length:
raise EOFError
return self.loads(obj)
def dumps(self, obj):
"""
Serialize an object into a byte array.
When batching is used, this will be called with an array of objects.
"""
raise NotImplementedError
def loads(self, obj):
"""
Deserialize an object from a byte array.
"""
raise NotImplementedError
class BatchedSerializer(Serializer):
"""
Serializes a stream of objects in batches by calling its wrapped
Serializer with streams of objects.
"""
UNLIMITED_BATCH_SIZE = -1
UNKNOWN_BATCH_SIZE = 0
def __init__(self, serializer, batchSize=UNLIMITED_BATCH_SIZE):
self.serializer = serializer
self.batchSize = batchSize
def _batched(self, iterator):
if self.batchSize == self.UNLIMITED_BATCH_SIZE:
yield list(iterator)
elif hasattr(iterator, "__len__") and hasattr(iterator, "__getslice__"):
n = len(iterator)
for i in range(0, n, self.batchSize):
yield iterator[i: i + self.batchSize]
else:
items = []
count = 0
for item in iterator:
items.append(item)
count += 1
if count == self.batchSize:
yield items
items = []
count = 0
if items:
yield items
def dump_stream(self, iterator, stream):
self.serializer.dump_stream(self._batched(iterator), stream)
def load_stream(self, stream):
return chain.from_iterable(self._load_stream_without_unbatching(stream))
def _load_stream_without_unbatching(self, stream):
return self.serializer.load_stream(stream)
def __repr__(self):
return "BatchedSerializer(%s, %d)" % (str(self.serializer), self.batchSize)
class FlattenedValuesSerializer(BatchedSerializer):
"""
Serializes a stream of list of pairs, split the list of values
which contain more than a certain number of objects to make them
have similar sizes.
"""
def __init__(self, serializer, batchSize=10):
BatchedSerializer.__init__(self, serializer, batchSize)
def _batched(self, iterator):
n = self.batchSize
for key, values in iterator:
for i in range(0, len(values), n):
yield key, values[i:i + n]
def load_stream(self, stream):
return self.serializer.load_stream(stream)
def __repr__(self):
return "FlattenedValuesSerializer(%s, %d)" % (self.serializer, self.batchSize)
class AutoBatchedSerializer(BatchedSerializer):
"""
Choose the size of batch automatically based on the size of object
"""
def __init__(self, serializer, bestSize=1 << 16):
BatchedSerializer.__init__(self, serializer, self.UNKNOWN_BATCH_SIZE)
self.bestSize = bestSize
def dump_stream(self, iterator, stream):
batch, best = 1, self.bestSize
iterator = iter(iterator)
while True:
vs = list(itertools.islice(iterator, batch))
if not vs:
break
bytes = self.serializer.dumps(vs)
write_int(len(bytes), stream)
stream.write(bytes)
size = len(bytes)
if size < best:
batch *= 2
elif size > best * 10 and batch > 1:
batch //= 2
def __repr__(self):
return "AutoBatchedSerializer(%s)" % self.serializer
class CartesianDeserializer(Serializer):
"""
Deserializes the JavaRDD cartesian() of two PythonRDDs.
Due to pyspark batching we cannot simply use the result of the Java RDD cartesian,
we additionally need to do the cartesian within each pair of batches.
"""
def __init__(self, key_ser, val_ser):
self.key_ser = key_ser
self.val_ser = val_ser
def _load_stream_without_unbatching(self, stream):
key_batch_stream = self.key_ser._load_stream_without_unbatching(stream)
val_batch_stream = self.val_ser._load_stream_without_unbatching(stream)
for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream):
# for correctness with repeated cartesian/zip this must be returned as one batch
yield product(key_batch, val_batch)
def load_stream(self, stream):
return chain.from_iterable(self._load_stream_without_unbatching(stream))
def __repr__(self):
return "CartesianDeserializer(%s, %s)" % \
(str(self.key_ser), str(self.val_ser))
class PairDeserializer(Serializer):
"""
Deserializes the JavaRDD zip() of two PythonRDDs.
Due to pyspark batching we cannot simply use the result of the Java RDD zip,
we additionally need to do the zip within each pair of batches.
"""
def __init__(self, key_ser, val_ser):
self.key_ser = key_ser
self.val_ser = val_ser
def _load_stream_without_unbatching(self, stream):
key_batch_stream = self.key_ser._load_stream_without_unbatching(stream)
val_batch_stream = self.val_ser._load_stream_without_unbatching(stream)
for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream):
# For double-zipped RDDs, the batches can be iterators from other PairDeserializer,
# instead of lists. We need to convert them to lists if needed.
key_batch = key_batch if hasattr(key_batch, '__len__') else list(key_batch)
val_batch = val_batch if hasattr(val_batch, '__len__') else list(val_batch)
if len(key_batch) != len(val_batch):
raise ValueError("Can not deserialize PairRDD with different number of items"
" in batches: (%d, %d)" % (len(key_batch), len(val_batch)))
# for correctness with repeated cartesian/zip this must be returned as one batch
yield zip(key_batch, val_batch)
def load_stream(self, stream):
return chain.from_iterable(self._load_stream_without_unbatching(stream))
def __repr__(self):
return "PairDeserializer(%s, %s)" % (str(self.key_ser), str(self.val_ser))
class NoOpSerializer(FramedSerializer):
def loads(self, obj):
return obj
def dumps(self, obj):
return obj
# Hack namedtuple, make it picklable
__cls = {} # type: ignore
def _restore(name, fields, value):
""" Restore an object of namedtuple"""
k = (name, fields)
cls = __cls.get(k)
if cls is None:
cls = collections.namedtuple(name, fields)
__cls[k] = cls
return cls(*value)
def _hack_namedtuple(cls):
""" Make class generated by namedtuple picklable """
name = cls.__name__
fields = cls._fields
def __reduce__(self):
return (_restore, (name, fields, tuple(self)))
cls.__reduce__ = __reduce__
cls._is_namedtuple_ = True
return cls
def _hijack_namedtuple():
""" Hack namedtuple() to make it picklable """
# hijack only one time
if hasattr(collections.namedtuple, "__hijack"):
return
global _old_namedtuple # or it will put in closure
global _old_namedtuple_kwdefaults # or it will put in closure too
def _copy_func(f):
return types.FunctionType(f.__code__, f.__globals__, f.__name__,
f.__defaults__, f.__closure__)
_old_namedtuple = _copy_func(collections.namedtuple)
_old_namedtuple_kwdefaults = collections.namedtuple.__kwdefaults__
def namedtuple(*args, **kwargs):
for k, v in _old_namedtuple_kwdefaults.items():
kwargs[k] = kwargs.get(k, v)
cls = _old_namedtuple(*args, **kwargs)
return _hack_namedtuple(cls)
# replace namedtuple with the new one
collections.namedtuple.__globals__["_old_namedtuple_kwdefaults"] = _old_namedtuple_kwdefaults
collections.namedtuple.__globals__["_old_namedtuple"] = _old_namedtuple
collections.namedtuple.__globals__["_hack_namedtuple"] = _hack_namedtuple
collections.namedtuple.__code__ = namedtuple.__code__
collections.namedtuple.__hijack = 1
# hack the cls already generated by namedtuple.
# Those created in other modules can be pickled as normal,
# so only hack those in __main__ module
for n, o in sys.modules["__main__"].__dict__.items():
if (type(o) is type and o.__base__ is tuple
and hasattr(o, "_fields")
and "__reduce__" not in o.__dict__):
_hack_namedtuple(o) # hack inplace
_hijack_namedtuple()
class PickleSerializer(FramedSerializer):
"""
Serializes objects using Python's pickle serializer:
http://docs.python.org/2/library/pickle.html
This serializer supports nearly any Python object, but may
not be as fast as more specialized serializers.
"""
def dumps(self, obj):
return pickle.dumps(obj, pickle_protocol)
def loads(self, obj, encoding="bytes"):
return pickle.loads(obj, encoding=encoding)
class CloudPickleSerializer(PickleSerializer):
def dumps(self, obj):
try:
return cloudpickle.dumps(obj, pickle_protocol)
except pickle.PickleError:
raise
except Exception as e:
emsg = str(e)
if "'i' format requires" in emsg:
msg = "Object too large to serialize: %s" % emsg
else:
msg = "Could not serialize object: %s: %s" % (e.__class__.__name__, emsg)
print_exec(sys.stderr)
raise pickle.PicklingError(msg)
class MarshalSerializer(FramedSerializer):
"""
Serializes objects using Python's Marshal serializer:
http://docs.python.org/2/library/marshal.html
This serializer is faster than PickleSerializer but supports fewer datatypes.
"""
def dumps(self, obj):
return marshal.dumps(obj)
def loads(self, obj):
return marshal.loads(obj)
class AutoSerializer(FramedSerializer):
"""
Choose marshal or pickle as serialization protocol automatically
"""
def __init__(self):
FramedSerializer.__init__(self)
self._type = None
def dumps(self, obj):
if self._type is not None:
return b'P' + pickle.dumps(obj, -1)
try:
return b'M' + marshal.dumps(obj)
except Exception:
self._type = b'P'
return b'P' + pickle.dumps(obj, -1)
def loads(self, obj):
_type = obj[0]
if _type == b'M':
return marshal.loads(obj[1:])
elif _type == b'P':
return pickle.loads(obj[1:])
else:
raise ValueError("invalid serialization type: %s" % _type)
class CompressedSerializer(FramedSerializer):
"""
Compress the serialized data
"""
def __init__(self, serializer):
FramedSerializer.__init__(self)
assert isinstance(serializer, FramedSerializer), "serializer must be a FramedSerializer"
self.serializer = serializer
def dumps(self, obj):
return zlib.compress(self.serializer.dumps(obj), 1)
def loads(self, obj):
return self.serializer.loads(zlib.decompress(obj))
def __repr__(self):
return "CompressedSerializer(%s)" % self.serializer
class UTF8Deserializer(Serializer):
"""
Deserializes streams written by String.getBytes.
"""
def __init__(self, use_unicode=True):
self.use_unicode = use_unicode
def loads(self, stream):
length = read_int(stream)
if length == SpecialLengths.END_OF_DATA_SECTION:
raise EOFError
elif length == SpecialLengths.NULL:
return None
s = stream.read(length)
return s.decode("utf-8") if self.use_unicode else s
def load_stream(self, stream):
try:
while True:
yield self.loads(stream)
except struct.error:
return
except EOFError:
return
def __repr__(self):
return "UTF8Deserializer(%s)" % self.use_unicode
def read_long(stream):
length = stream.read(8)
if not length:
raise EOFError
return struct.unpack("!q", length)[0]
def write_long(value, stream):
stream.write(struct.pack("!q", value))
def pack_long(value):
return struct.pack("!q", value)
def read_int(stream):
length = stream.read(4)
if not length:
raise EOFError
return struct.unpack("!i", length)[0]
def write_int(value, stream):
stream.write(struct.pack("!i", value))
def read_bool(stream):
length = stream.read(1)
if not length:
raise EOFError
return struct.unpack("!?", length)[0]
def write_with_length(obj, stream):
write_int(len(obj), stream)
stream.write(obj)
class ChunkedStream(object):
"""
This is a file-like object takes a stream of data, of unknown length, and breaks it into fixed
length frames. The intended use case is serializing large data and sending it immediately over
a socket -- we do not want to buffer the entire data before sending it, but the receiving end
needs to know whether or not there is more data coming.
It works by buffering the incoming data in some fixed-size chunks. If the buffer is full, it
first sends the buffer size, then the data. This repeats as long as there is more data to send.
When this is closed, it sends the length of whatever data is in the buffer, then that data, and
finally a "length" of -1 to indicate the stream has completed.
"""
def __init__(self, wrapped, buffer_size):
self.buffer_size = buffer_size
self.buffer = bytearray(buffer_size)
self.current_pos = 0
self.wrapped = wrapped
def write(self, bytes):
byte_pos = 0
byte_remaining = len(bytes)
while byte_remaining > 0:
new_pos = byte_remaining + self.current_pos
if new_pos < self.buffer_size:
# just put it in our buffer
self.buffer[self.current_pos:new_pos] = bytes[byte_pos:]
self.current_pos = new_pos
byte_remaining = 0
else:
# fill the buffer, send the length then the contents, and start filling again
space_left = self.buffer_size - self.current_pos
new_byte_pos = byte_pos + space_left
self.buffer[self.current_pos:self.buffer_size] = bytes[byte_pos:new_byte_pos]
write_int(self.buffer_size, self.wrapped)
self.wrapped.write(self.buffer)
byte_remaining -= space_left
byte_pos = new_byte_pos
self.current_pos = 0
def close(self):
# if there is anything left in the buffer, write it out first
if self.current_pos > 0:
write_int(self.current_pos, self.wrapped)
self.wrapped.write(self.buffer[:self.current_pos])
# -1 length indicates to the receiving end that we're done.
write_int(-1, self.wrapped)
self.wrapped.close()
@property
def closed(self):
"""
Return True if the `wrapped` object has been closed.
NOTE: this property is required by pyarrow to be used as a file-like object in
pyarrow.RecordBatchStreamWriter from ArrowStreamSerializer
"""
return self.wrapped.closed
if __name__ == '__main__':
import doctest
(failure_count, test_count) = doctest.testmod()
if failure_count:
sys.exit(-1)