forked from arendst/Tasmota
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_3dmath.h
218 lines (181 loc) · 6.25 KB
/
helper_3dmath.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class, 3D math helper
// 6/5/2012 by Jeff Rowberg <[email protected]>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Adapted for Tasmota by Oliver Welter <[email protected]> 02-04-2018
//
// Changelog:
// 2012-06-05 - add 3D math helper file to DMP6 example sketch
/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
#ifndef _HELPER_3DMATH_H_
#define _HELPER_3DMATH_H_
class Quaternion {
public:
float w;
float x;
float y;
float z;
Quaternion() {
w = 1.0f;
x = 0.0f;
y = 0.0f;
z = 0.0f;
}
Quaternion(float nw, float nx, float ny, float nz) {
w = nw;
x = nx;
y = ny;
z = nz;
}
Quaternion getProduct(Quaternion q) {
// Quaternion multiplication is defined by:
// (Q1 * Q2).w = (w1w2 - x1x2 - y1y2 - z1z2)
// (Q1 * Q2).x = (w1x2 + x1w2 + y1z2 - z1y2)
// (Q1 * Q2).y = (w1y2 - x1z2 + y1w2 + z1x2)
// (Q1 * Q2).z = (w1z2 + x1y2 - y1x2 + z1w2
return Quaternion(
w*q.w - x*q.x - y*q.y - z*q.z, // new w
w*q.x + x*q.w + y*q.z - z*q.y, // new x
w*q.y - x*q.z + y*q.w + z*q.x, // new y
w*q.z + x*q.y - y*q.x + z*q.w); // new z
}
Quaternion getConjugate() {
return Quaternion(w, -x, -y, -z);
}
float getMagnitude() {
return sqrt(w*w + x*x + y*y + z*z);
}
void normalize() {
float m = getMagnitude();
w /= m;
x /= m;
y /= m;
z /= m;
}
Quaternion getNormalized() {
Quaternion r(w, x, y, z);
r.normalize();
return r;
}
};
class VectorInt16 {
public:
int16_t x;
int16_t y;
int16_t z;
VectorInt16() {
x = 0;
y = 0;
z = 0;
}
VectorInt16(int16_t nx, int16_t ny, int16_t nz) {
x = nx;
y = ny;
z = nz;
}
float getMagnitude() {
return sqrt(x*x + y*y + z*z);
}
void normalize() {
float m = getMagnitude();
x /= m;
y /= m;
z /= m;
}
VectorInt16 getNormalized() {
VectorInt16 r(x, y, z);
r.normalize();
return r;
}
void rotate(Quaternion *q) {
// http://www.cprogramming.com/tutorial/3d/quaternions.html
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
// http://content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation
// ^ or: http://webcache.googleusercontent.com/search?q=cache:xgJAp3bDNhQJ:content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation&hl=en&gl=us&strip=1
// P_out = q * P_in * conj(q)
// - P_out is the output vector
// - q is the orientation quaternion
// - P_in is the input vector (a*aReal)
// - conj(q) is the conjugate of the orientation quaternion (q=[w,x,y,z], q*=[w,-x,-y,-z])
Quaternion p(0, x, y, z);
// quaternion multiplication: q * p, stored back in p
p = q -> getProduct(p);
// quaternion multiplication: p * conj(q), stored back in p
p = p.getProduct(q -> getConjugate());
// p quaternion is now [0, x', y', z']
x = p.x;
y = p.y;
z = p.z;
}
VectorInt16 getRotated(Quaternion *q) {
VectorInt16 r(x, y, z);
r.rotate(q);
return r;
}
};
class VectorFloat {
public:
float x;
float y;
float z;
VectorFloat() {
x = 0;
y = 0;
z = 0;
}
VectorFloat(float nx, float ny, float nz) {
x = nx;
y = ny;
z = nz;
}
float getMagnitude() {
return sqrt(x*x + y*y + z*z);
}
void normalize() {
float m = getMagnitude();
x /= m;
y /= m;
z /= m;
}
VectorFloat getNormalized() {
VectorFloat r(x, y, z);
r.normalize();
return r;
}
void rotate(Quaternion *q) {
Quaternion p(0, x, y, z);
// quaternion multiplication: q * p, stored back in p
p = q -> getProduct(p);
// quaternion multiplication: p * conj(q), stored back in p
p = p.getProduct(q -> getConjugate());
// p quaternion is now [0, x', y', z']
x = p.x;
y = p.y;
z = p.z;
}
VectorFloat getRotated(Quaternion *q) {
VectorFloat r(x, y, z);
r.rotate(q);
return r;
}
};
#endif /* _HELPER_3DMATH_H_ */