Skip to content

Official implementation of our ICLR 2023 paper "Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting"

Notifications You must be signed in to change notification settings

smleehdx/Crossformer

Repository files navigation

Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting (ICLR 2023)

This is the origin Pytorch implementation of Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting.

Key Points of Crossformer

1. Dimension-Segment-Wise (DSW) Embedding

Figure 1. DSW embedding. Left: Embedding method of previous Transformer-based model: data points in different dimensions at the same step are embedded into a vector; Right: DSW embedding of Crossformer: in each dimension, nearby points over time form a segment for embedding.

2. Two-Stage Attention (TSA) Layer

Figure 2. TSA layer. Left: Overall structure: the 2D vector array goes through the Cross-Time Stage and Cross-Dimension Stage to get corresponding dependency; Middle: Directly using MSA in Cross-Dimension Stage to build the $D$-to-$D$ connection results in $O(D^2)$ complexity. Right: Router mechanism for Cross-Dimension Stage: a small fixed number ($c$) of ``routers'' gather and distribute the information among dimensions. The complexity is reduced to $O(2cD) = O(D)$.

3. Hierarchical Encoder-Decoder (HED)

Figure 3. HED. The encoder (left) uses TSA layer and segment merging to capture dependency at different scales; the decoder (right) makes the final prediction by forecasting at each scale and adding them up.

Requirements

  • Python 3.7.10
  • numpy==1.20.3
  • pandas==1.3.2
  • torch==1.8.1
  • einops==0.4.1

Reproducibility

  1. Put datasets to conduct experiments into folder datasets/. We have already put ETTh1 and ETTm1 into it. WTH and ECL can be downloaded from https://github.com/zhouhaoyi/Informer2020. ILI and Traffic can be downloaded from https://github.com/thuml/Autoformer. Note that the WTH we used in the paper is the one with 12 dimensions from Informer, not the one with 21 dimensions from Autoformer.

  2. To get results of Crossformer with $T=168, \tau = 24, L_{seg} = 6$ on ETTh1 dataset, run:

python main_crossformer.py --data ETTh1 --in_len 168 --out_len 24 --seg_len 6 --itr 1

The model will be automatically trained and tested. The trained model will be saved in folder checkpoints/ and evaluated metrics will be saved in folder results/.

  1. You can also evaluate a trained model by running:
python eval_crossformer.py --checkpoint_root ./checkpoints --setting_name Crossformer_ETTh1_il168_ol24_sl6_win2_fa10_dm256_nh4_el3_itr0
  1. To reproduce all results in the paper, run following scripts to get corresponding results:
bash scripts/ETTh1.sh
bash scripts/ETTm1.sh
bash scripts/WTH.sh
bash scripts/ECL.sh
bash scripts/ILI.sh
bash scripts/Traffic.sh

Custom Usage

We use the AirQuality dataset to show how to train and evaluate Crossformer with your own data.

  1. Modify the AirQualityUCI.csv dataset into the following format, where the first column is date (or you can just leave the first column blank) and the other 13 columns are multivariate time series to forecast. And put the modified file into folder datasets/


Figure 4. An example of the custom dataset.

  1. This is an hourly-sampled dataset with 13 dimensions. And we are going to use the past week (168 hours) to forecast the next day (24 hour) and the segment length is set to 6. Therefore, we need to run:
python main_crossformer.py --data AirQuality --data_path AirQualityUCI.csv --data_dim 13 --in_len 168 --out_len 24 --seg_len 6
  1. We can evaluate the trained model by running:
python eval_crossformer.py --setting_name Crossformer_AirQuality_il168_ol24_sl6_win2_fa10_dm256_nh4_el3_itr0 --save_pred

The model will be evaluated, predicted and ground truth series will be saved in results/Crossformer_AirQuality_il168_ol24_sl6_win2_fa10_dm256_nh4_el3_itr0

main_crossformer is the entry point of our model and there are other parameters that can be tuned. Here we describe them in detail:

Parameter name Description of parameter
data The dataset name
root_path The root path of the data file (defaults to ./datasets/)
data_path The data file name (defaults to ETTh1.csv)
data_split Train/Val/Test split, can be ratio (e.g. 0.7,0.1,0.2) or number (e.g. 16800,2880,2880), (defaults to 0.7,0.1,0.2)
checkpoints Location of to store the trained model (defaults to ./checkpoints/)
in_len Length of input/history sequence, i.e. $T$ in the paper (defaults to 96)
out_len Length of output/future sequence, i.e. $\tau$ in the paper (defaults to 24)
seg_len Length of each segment in DSW embedding, i.e. $L_{seg}$ in the paper (defaults to 6)
win_size How many adjacent segments to be merged into one in segment merging of HED (defaults to 2)
factor Number of routers in Cross-Dimension Stage of TSA, i.e. $c$ in the paper (defaults to 10)
data_dim Number of dimensions of the MTS data, i.e. $D$ in the paper (defaults to 7 for ETTh and ETTm)
d_model Dimension of hidden states, i.e. $d_{model}$ in the paper (defaults to 256)
d_ff Dimension of MLP in MSA (defaults to 512)
n_heads Num of heads in MSA (defaults to 4)
e_layers Num of encoder layers, i.e. $N$ in the paper (defaults to 3)
dropout The probability of dropout (defaults to 0.2)
num_workers The num_works of Data loader (defaults to 0)
batch_size The batch size for training and testing (defaults to 32)
train_epochs Train epochs (defaults to 20)
patience Early stopping patience (defaults to 3)
learning_rate The initial learning rate for the optimizer (defaults to 1e-4)
lradj Ways to adjust the learning rate (defaults to type1)
itr Experiments times (defaults to 1)
save_pred Whether to save the predicted results. If True, the predicted results will be saved in folder results in numpy array form. This will cost a lot time and memory for datasets with large $D$. (defaults to False).
use_gpu Whether to use gpu (defaults to True)
gpu The gpu no, used for training and inference (defaults to 0)
use_multi_gpu Whether to use multiple gpus (defaults to False)
devices Device ids of multile gpus (defaults to 0,1,2,3)

Acknowledgement

We appreciate the following works for their valuable code and data for time series forecasting:

https://github.com/zhouhaoyi/Informer2020

https://github.com/thuml/Autoformer

https://github.com/alipay/Pyraformer

https://github.com/MAZiqing/FEDformer

The following two Vision Transformer works also inspire our TSA and HED designs:

https://github.com/google-research/vision_transformer

https://github.com/microsoft/Swin-Transformer

About

Official implementation of our ICLR 2023 paper "Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.6%
  • Shell 13.4%