-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathUnbounded_Knapsack.cpp
81 lines (66 loc) · 1.93 KB
/
Unbounded_Knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
//Link: https://practice.geeksforgeeks.org/problems/knapsack-with-duplicate-items4201/1
/*
Knapsack with Duplicate Items :
Given a set of N items, each with a weight and a value, and a weight limit W. Find the maximum value of a collection containing any of the N items any number of times so that the total weight is less than or equal to W.
Example 1:
Input: N = 2, W = 3
val[] = {1, 1}
wt[] = {2, 1}
Output: 3
Explaination: Pick the 2nd element thrice.
Example 2:
Input: N = 4, W = 8
val[] = {1, 4, 5, 7}
wt[] = {1, 3, 4, 5}
Output: 11
Explaination: The optimal choice is to
pick the 2nd and 4th element.*/
// Initial Template for C++
#include <bits/stdc++.h>
using namespace std;
// } Driver Code Ends
// User function Template for C++
class Solution{
public:
int knapSack(int N, int W, int val[], int wt[])
{
// code here
int dp[N+1][W+1];
memset(dp,-1,sizeof(dp));
for(int i=0;i<N+1;i++)
{
for(int j=0;j<W+1;j++)
{
if(i==0 || j==0)
{
dp[i][j]=0;
}
//Here if weight is less than j it wont be considered processed and we will consider it multiple times. that's why we write val[i-1]+dp[i][j-wt[i-1]] instead of val[i-1]+dp[i-1][j-wt[i-1]]
else if(wt[i-1]<=j){
dp[i][j]= max(val[i-1]+dp[i][j-wt[i-1]] , dp[i-1][j]);
}
else{
dp[i][j] = dp[i-1][j];
}
}
}
return dp[N][W];
}
};
// { Driver Code Starts.
int main(){
int t;
cin>>t;
while(t--){
int N, W;
cin>>N>>W;
int val[N], wt[N];
for(int i = 0;i < N;i++)
cin>>val[i];
for(int i = 0;i < N;i++)
cin>>wt[i];
Solution ob;
cout<<ob.knapSack(N, W, val, wt)<<endl;
}
return 0;
} // } Driver Code Ends