-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathknapsack_01.cpp
139 lines (107 loc) · 3.51 KB
/
knapsack_01.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Question:
// 0 - 1 Knapsack Problem :
// You are given weights and values of N items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack.
// Note that we have only one quantity of each item.
// Example 1:
// Input:
// N = 3
// W = 4
// values[] = {1,2,3}
// weight[] = {4,5,1}
// Output: 3
// Example 2:
// Input:
// N = 3
// W = 3
// values[] = {1,2,3}
// weight[] = {4,5,6}
// Output: 0
//Approch followed: memoization
// Memoization: Make a choice digram for recursion,
// this will consist of if you can include the element in the knapsack or not,
// check if the weight of current item is less than or equal to toal weight,
// if it is, return the max of recursive call of the same function including
// the element (reduce the max Weight and n) or don;t include the element,
// this will oonly reduce n. And if the element's weight is more than current. don't include
// and call the function again with onoly n-1. for the DP part, initialize a global matrix and memset it to -1
// in the main code. whenever you are going in any condition, make the matrix on basis of the dimension of the varibale
// inputs of the recurisie function. Here it will be W and n, make a matrix of W+1 and n+1 dimension and for every recurvie
// return, instead, store that value insdie that matrix, before going into any call, check if
// the value foor that W and n is something else than the initalize mem set value of the matrix, if so directly return that
// { Driver Code Starts
#include<bits/stdc++.h>
using namespace std;
// } Driver Code Ends
class Solution
{
public:
int t[1001][1001];
int solve(int W, int wt[], int val[], int n){
if(t[n][W]!=-1){
return t[n][W];
}
if(W==0 || n==0){
t[n][W]=0;
return 0;
}
if(wt[n-1]<=W){
t[n][W]=max(val[n-1]+solve(W-wt[n-1],wt,val,n-1),solve(W,wt,val,n-1));
return t[n][W];
}
else {
t[n][W]=solve(W,wt,val,n-1);
return t[n][W];
}
}
//Function to return max value that can be put in knapsack of capacity W.
int knapSack(int W, int wt[], int val[], int n)
{
memset(t,-1,sizeof(t));
return solve(W,wt,val,n);
// Your code here
}
};
// Alternative Method for 0/1 Knapsack
//Tabulation Method (Bottom-up Approach)
//Function to return max value that can be put in knapsack of capacity W.
int knapSack(int W, int wt[], int val[], int n)
{
// Your code here
int dp[n+1][W+1];
for(int i=0;i<n+1;i++)
{
for(int j=0;j<W+1;j++)
if(i==0 || j==0)
dp[i][j]=0;
else if(wt[i-1]<=j)
dp[i][j]= max(val[i-1] + dp[i-1][j-wt[i-1]] , dp[i-1][j]);
else
dp[i][j]= dp[i-1][j];
}
return dp[n][W];
}
// { Driver Code Starts.
int main()
{
//taking total testcases
int t;
cin>>t;
while(t--)
{
//reading number of elements and weight
int n, w;
cin>>n>>w;
int val[n];
int wt[n];
//inserting the values
for(int i=0;i<n;i++)
cin>>val[i];
//inserting the weights
for(int i=0;i<n;i++)
cin>>wt[i];
Solution ob;
//calling method knapSack()
cout<<ob.knapSack(w, wt, val, n)<<endl;
}
return 0;
} // } Driver Code Ends