-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathComplex_numbers.cpp
123 lines (116 loc) · 2.69 KB
/
Complex_numbers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/* Title : To perform the following operations on Complex numbers:
Add, subtract, multiply, divide, complex conjugate,Modulus. */
/* Program Code : */
#include <iostream>
#include<cmath>
using namespace std;
class complex
{
float real, img;
public:
void display();
void read();
void add(complex,complex);
void sub(complex,complex);
void multiply(complex,complex);
void divide(complex,complex);
void conjugate(complex);
float modulus(complex);
};
int main()
{
complex sum,su,mult,div,conj,c1,c2,c,mod ;
int opt;
do{
cout<<"ENTER THE OPTION" ;
cout<<"\n1.ADD \n2.SUB \n3.Multiply \n4.Divide \n5.Conjugate \n6.Modulus"<<'\n'<<endl;
cin>>opt;
switch(opt)
{
case 1 : c1.read();
c2.read();
cout<<"Sum is :"<<endl;
sum.add(c1,c2);
break;
case 2 : c1.read();
c2.read();
cout<<"Difference is :";
su.sub(c1,c2);
break;
case 3 : c1.read();
c2.read();
cout<<"Muliplication is : "<<endl;
mult.multiply(c1,c2);
break;
case 4 : cout<<"Enter dividant and then divisior"<<endl;
c1.read();
c2.read();
cout<<"Division is :"<<endl;
div.divide(c1,c2);
break;
case 5 : c.read();
cout<<"Conjuage is :"<<endl;
conj.conjugate(c);
break;
case 6 : c.read();
cout<<"Modulus of the given complex number is : "<<endl;
cout<<mod.modulus(c)<<endl;
break;
}
cout<<"\n Wish to continue ? : Press 1 or 0 \n1.Yes 0.No\n";
cin>>opt; }
while(opt!=0);
return 0;
}
void complex :: read()
{
cout<<"Enter real and imaginary part : ";
cin>>real>>img;
}
void complex :: display()
{
if(img>=0)
{ cout<<real<<"+"<<img<<"i"<<endl; }
else
cout<<real<<img<<"i"<<endl;
}
void complex :: add(complex c1,complex c2)
{
real = c1.real+c2.real;
img = c1.img+c2.img;
display();
}
void complex :: sub(complex c1 , complex c2)
{
real=c1.real-c2.real ;
img = c1.img-c2.img ;
display();
}
void complex :: multiply(complex c1 , complex c2)
{
real=(c1.real*c2.real)-(c1.img*c2.img);
img=(c1.real*c2.img)+(c1.img*c2.real);
display();
}
void complex :: divide(complex c1 , complex c2)
{ int i;
float r ,im;
i=(c2.real)*(c2.real) + (c2.img)*(c2.img);
real=(c1.real*c2.real)-(c1.img*c2.img*(-1));
img=(c1.real*c2.img*(-1))+(c1.img*c2.real);
real=real/i;
img=img/i;
display();
}
void complex :: conjugate(complex c)
{ int t;
real=c.real;
img=-c.img;
display();
}
float complex ::modulus(complex c)
{
float k;
k=sqrt(c.img*c.img+ c.real*c.real) ;
return k;
}