phoenix-spark extends Phoenix's MapReduce support to allow Spark to load Phoenix tables as RDDs or DataFrames, and enables persisting RDDs of Tuples back to Phoenix.
Given a Phoenix table with the following DDL
CREATE TABLE TABLE1 (ID BIGINT NOT NULL PRIMARY KEY, COL1 VARCHAR);
UPSERT INTO TABLE1 (ID, COL1) VALUES (1, 'test_row_1');
UPSERT INTO TABLE1 (ID, COL1) VALUES (2, 'test_row_2');
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._
val sc = new SparkContext("local", "phoenix-test")
val sqlContext = new SQLContext(sc)
val df = sqlContext.load(
"org.apache.phoenix.spark",
Map("table" -> "TABLE1", "zkUrl" -> "phoenix-server:2181")
)
df
.filter(df("COL1") === "test_row_1" && df("ID") === 1L)
.select(df("ID"))
.show
import org.apache.hadoop.conf.Configuration
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._
val configuration = new Configuration()
// Can set Phoenix-specific settings, requires 'hbase.zookeeper.quorum'
val sc = new SparkContext("local", "phoenix-test")
val sqlContext = new SQLContext(sc)
// Load the columns 'ID' and 'COL1' from TABLE1 as a DataFrame
val df = sqlContext.phoenixTableAsDataFrame(
"TABLE1", Array("ID", "COL1"), conf = configuration
)
df.show
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._
val sc = new SparkContext("local", "phoenix-test")
// Load the columns 'ID' and 'COL1' from TABLE1 as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc.phoenixTableAsRDD(
"TABLE1", Seq("ID", "COL1"), zkUrl = Some("phoenix-server:2181")
)
rdd.count()
val firstId = rdd1.first()("ID").asInstanceOf[Long]
val firstCol = rdd1.first()("COL1").asInstanceOf[String]
saveToPhoenix
is an implicit method on RDD[Product], or an RDD of Tuples. The data types must
correspond to the Java types Phoenix supports (http://phoenix.apache.org/language/datatypes.html)
Given a Phoenix table with the following DDL
CREATE TABLE OUTPUT_TEST_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
import org.apache.spark.SparkContext
import org.apache.phoenix.spark._
val sc = new SparkContext("local", "phoenix-test")
val dataSet = List((1L, "1", 1), (2L, "2", 2), (3L, "3", 3))
sc
.parallelize(dataSet)
.saveToPhoenix(
"OUTPUT_TEST_TABLE",
Seq("ID","COL1","COL2"),
zkUrl = Some("phoenix-server:2181")
)
The save
is method on DataFrame allows passing in a data source type. You can use
org.apache.phoenix.spark
, and must also pass in a table
and zkUrl
parameter to
specify which table and server to persist the DataFrame to. The column names are derived from
the DataFrame's schema field names, and must match the Phoenix column names.
The save
method also takes a SaveMode
option, for which only SaveMode.Overwrite
is supported.
Given two Phoenix tables with the following DDL:
CREATE TABLE INPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
CREATE TABLE OUTPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._
// Load INPUT_TABLE
val sc = new SparkContext("local", "phoenix-test")
val sqlContext = new SQLContext(sc)
val df = sqlContext.load("org.apache.phoenix.spark", Map("table" -> "INPUT_TABLE",
"zkUrl" -> hbaseConnectionString))
// Save to OUTPUT_TABLE
df.save("org.apache.phoenix.spark", SaveMode.Overwrite, Map("table" -> "OUTPUT_TABLE",
"zkUrl" -> hbaseConnectionString))
The functions phoenixTableAsDataFrame
, phoenixTableAsRDD
and saveToPhoenix
all support
optionally specifying a conf
Hadoop configuration parameter with custom Phoenix client settings,
as well as an optional zkUrl
parameter for the Phoenix connection URL.
If zkUrl
isn't specified, it's assumed that the "hbase.zookeeper.quorum" property has been set
in the conf
parameter. Similarly, if no configuration is passed in, zkUrl
must be specified.
- Basic support for column and predicate pushdown using the Data Source API
- The Data Source API does not support passing custom Phoenix settings in configuration, you must create the DataFrame or RDD directly if you need fine-grained configuration.
- No support for aggregate or distinct functions (http://phoenix.apache.org/phoenix_mr.html)