forked from cageo/Vollmer-2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhypercontour.m
executable file
·750 lines (727 loc) · 20.6 KB
/
hypercontour.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
function [points, lines, ticks, frame, grid] = hypercontour(rphi, options, rmax, kappa, nlevels, nnodes)
% Plots and contours geological fabric and strain data on hyperbaloidal projections.
%
% INPUT
% -----
% rphi : array (R, phi), R = strain ratio (A/B), phi = orientation of long
% axis (A) from x.
% options : comma separated string with non-default options (default = ''):
% angle format:
% '' = radians (default)
% 'rad' = radians
% 'deg' = degrees
% 'grd' = gradians
% projection (polar equidistant is default):
% '' = equidistant (log R, Elliott plot)
% 'eqd' = equidistant
% 'eqa' = equal-area
% 'stg' = stereographic
% 'ort' = orthographic
% 'gno' = gnomic
% 'lin' = exponential (linear R)
% 'rdl' = radial
% 'rfp' = Rf/phi (cylindrical instead of polar)
% contouring method:
% '' = contour (default)
% 'ctr' = contour
% 'nnm' = no normalization
% 'nct' = no contouring (only points will be returned)
% grid to image interpolation:
% '' = 5 parts (default)
% 'gi0' = off
% 'gi2' = 2 parts
% 'gi3' = 3 parts
% 'gi4' = 4 parts
% 'gi5' = 5 parts
% 'gi6' = 6 parts
% 'gi8' = 8 parts
% 'gia' = 10 parts
% frame and ticks:
% '' = draw circle and tics
% 'ntc' = draw circle, without tics
% 'nfr' = no frame
% grid:
% '' = grid
% 'ngd' = no grid
% rmax : maximum R value on plot, default = 0 (automatic).
% kappa : weighting parameter, default = 40.
% nlevels : number of levels spaced over the probability density distribution
% (pdd), 5 will divide the pdd into 5, giving 4 contour lines
% spaced at 20% of the distribution, default = 5.
% nnodes : number of grid nodes, higher is more accurate but slower, 30 is
% good, but 50 is recommended for final plots, default = 30.
%
% OUTPUT
% ------
% points : projected data points in unit circle or square as array of
% [x,y] = [points(:,1), points(:,2)]
% lines : projected contour line segments in unit circle or square as array of
% [x1,y1,x2,y2] = [lines(:,1), lines(:,2), lines(:,3), lines(:,4)].
% ticks : tick marks as line segments, [x1,y1,x2,y2].
% frame : bounding circle or square as line segments.
% grid : grid for display of color gradient: imagesc(-1:1, -1:1, grid).
%
% USAGE
% -----
% [points] = hypercontour(rphi, 'deg');
% [points, lines, ticks, frame] = hypercontour(rphi);
% [points, lines, ticks, frame, grid] = hypercontour(rphi);
% [points, lines, ticks, frame] = hypercontour(rphi, 'deg,rfp', 5, 60, 10, 50);
%
% All input parameters except 'data' are optional. The algorithm and function
% are described in:
%
% Vollmer, F.W., 2018. Automatic contouring of geological fabric and finite
% strain data on the unit hyperboloid. Computers & Geosciences,
% https://doi.org/10.1016/j.cageo.2018.03.006
%
% This paper should be referenced in publications or presentations using this
% or derivative code. See that paper and the files README.md, LICENSE.md,
% CITATION.md license and additional information.
%
% END HELP
% -----------------------------------------------------------------------------
%
% File : hypercontour.m
% Version : 1.0.0.9
% System : Matlab/Octave
% Author : Frederick W. Vollmer
% Date : 29 Mar 2018
% Notice : Copyright (c) 2017-2018, Frederick W. Vollmer
%
% DESCRIPTION
% -----------
% MATLAB/Octave function for plotting and contouring hyperbaloidal projections
% of geological fabric and finite strain data density calculations done on the
% unit hyperbaloid (Vollmer, 2018). Options are given for equidistant
% (Elliott), equal-area, stereographic, orthographic, exponential, and radial
% projections, as polar azimuthal or cylindrical (cartesian, RfPhi-type) plots.
%
% The data must be in a comma delimited csv text file with one (R, phi) pair
% per line, where R = strain ratio (max/min), phi = orientation of long (max)
% axis from x. Contours are equally spaced over the probability density
% distribution. Options are specified with an input string, such as 'deg,ort',
% see above help for all options.
%
% Publications or presentations using this or derivative code to produce
% figures or other content should cite the following paper:
%
% Vollmer, F.W., 2018. Automatic contouring of geological fabric and finite
% strain data on the unit hyperboloid. Computers & Geosciences,
% https://doi.org/10.1016/j.cageo.2018.03.006
%
% See this paper and the files README.md, LICENSE.md, and CITATION.md for
% additional information.
%
% Fabric and finite strain data contouring is also implemented in the
% standalone program EllipseFit by this author, which is free, has numerous
% additional functions, and is faster. It runs on Macintosh, Windows, and
% Linux platforms, and is recommended over this function for non-MATLAB/Octave
% use. It can be downloaded for free from:
%
% www.frederickvollmer.com/ellipsefit
% www.newpaltz.edu/~vollmerf
%
% Please contact the author for any bug reports or feature requests:
%
% Frederick W. Vollmer
%
%------------------------------------------------------------------------------
%function [points, lines, ticks, frame, grid] = hypercontour(rphi, options, rmax, kappa, nlevels, nnodes)
global opts;
switch nargin
case 1
options = '';
rmax = 0.0; % automatic
kappa = 40.0;
nlevels = 5;
nnodes = 30;
case 2
rmax = 0.0;
kappa = 40.0;
nlevels = 5;
nnodes = 30;
case 3
kappa = 40.0;
nlevels = 5;
nnodes = 30;
case 4
nlevels = 10;
nnodes = 30;
case 5
nnodes = 30;
case 6
nnodes = nnodes;
otherwise
return % error
end
if rmax < 1.0
rmax = ceil(max(rphi(:,1))) + 1.0;
end
opts = getOptions(options);
if nargout < 5 % no grid
opts.grid = 0
end
if nargout < 4 % no frame
opts.frame = 0
end
if nargout < 3 % no ticks
opts.ticks = 0
end
if nargout < 2 % no lines
opts.contour = 0
end
if nargout < 1
return % error
end
if (opts.angfmt == 1) % degrees
f = pi/180.0;
elseif (opts.angfmt == 2) % gradians
f = pi/200.0;
else % radians
f = 1.0;
end
for i = 1:length(rphi)
rphi(i,2) = rphi(i,2) * f; % to radians
[points(i,1), points(i,2)] = rPhiToXYUnit(rphi(i,1), rphi(i,2), rmax);
end
if opts.contour
[grid, lines] = contour(rphi, rmax, kappa, nlevels, nnodes);
if opts.grid
grid = processGrid(grid, rmax);
end
end
ticks = drawTicks(rmax);
frame = drawFrame();
end
function [grid] = processGrid(grid, rmax)
global opts;
grid = grid';
[n, m] = size(grid);
[x y] = meshgrid(1:n);
if (opts.interp < 0.0)
zi = grid;
else
[xi yi] = meshgrid(1:opts.interp:n);
zi = interp2(x,y,grid,xi,yi);
end
[ni, mi] = size(zi);
[xi yi] = meshgrid(1:ni);
if ~opts.rfp
r = 0.5 * (ni-1);
r2 = r * r;
% clip to circle, but NaN is implementation depependent
% so use 0, and colormap starting with white
%zi((xi - r - 1).^2 + (yi - r - 1).^2 > r2) = NaN;
zi((xi - r - 1).^2 + (yi - r - 1).^2 > r2) = 0.0;
end
grid = zi;
end
% rToZeta - projects R to zeta. Ref: Yamaji, 2008.
function [z] = rToZeta(r)
global opts;
switch opts.proj
case 0 % equidistant (Elliott)
z = log(r);
case 1 % equal-area
t = sqrt(r);
z = t - 1.0/t;
case 2 % stereographic
t = sqrt(r);
s = 1.0 / t;
z = 2.0 * (t - s) / (t + s);
case 3 % orthographic
z = 0.5 * (r - 1.0/r);
case 4 % gnomic
t = r * r;
z = (t-1)/(t+1);
case 5 % linear (exponential)
z = r - 1;
case 6 % cylindrical (radial)
z = 0.5 * (r + 1.0/r) - 1;
end
end
% zetaToR - back projects zeta to R.
function [r] = zetaToR(z)
global opts;
switch opts.proj
case 0 % equidistant (Elliott)
r = exp(z);
case 1 % equal-area
t = z + sqrt(z*z + 4.0);
r = t * t * 0.25;
case 2 % stereographic
t = 0.5 * z;
r = (1.0 + t)/(1.0 - t);
case 3 % orthographic
r = z + sqrt(z * z + 1);
case 4 % gnomic
t = 0.0;
if z < 0.99 % 0..1, 1 -> inf, 0.99 -> 199
t = sqrt((1.0+z)/(1.0-z));
end
if t < 50.001 % cap r
r = t;
else
r = 0.0;
end
case 5 % linear (exponential)
r = z + 1.0;
case 6 % cylindrical (radial)
t = z + 1.0;
r = t + sqrt(t * t - 1.0);
end
end
% rPhiToXY - projects R, phi to cartesian coordinates of unit hyperbaloidal
% projection. Maps to [-1..-1, +1..+1] to overlie unit image.
function [x, y] = rPhiToXYUnit(r, phi, rmax)
global opts;
z = rToZeta(r);
zm = rToZeta(rmax);
s = z / zm;
if opts.rfp
p = phi;
if p < -0.5 * pi
p = p + pi;
elseif p > 0.5 * pi
p = p - pi;
end
x = 2.0 * p/pi;
y = 2.0 * s - 1.0;
else % polar
x = s * cos(2.0 * phi);
y = s * sin(2.0 * phi);
end
end
% xYToRPhi - back projects cartesian coordinates of hyperbaloidal projection.
% Not scaled from unit plot.
function [r, phi] = xYToRPhi(x, y, rmax)
global opts;
zm = rToZeta(rmax);
if opts.rfp
z = (y + zm) * 0.5;
r = zetaToR(z);
phi = x * (0.5 * pi / zm);
if phi < -0.5 * pi
phi = phi + pi;
elseif phi > 0.5 * pi
phi = phi - pi;
end
else % polar
t = sqrt(x*x + y*y);
r = zetaToR(t);
phi = 0.5 * atan2(y, x);
end
end
% rhoPsiToH - set as a hyperbolic position vector from rho and psi. For strain
% ellipses: rho = ln(R), psi = 2 phi. Ref: Yamaji, 2008. }
function [h] = rhoPsiToH(rho, psi)
s = sinh(rho);
h(1) = cosh(rho);
h(2) = s * cos(psi);
h(3) = s * sin(psi);
end
% rPhiToH - converts R, phi to hyperbaloidal point.
function [h] = rPhiToH(r, phi)
if r < 1.0 % error
rho = 0.0;
else
rho = log(r);
end
psi = 2.0 * phi;
h = rhoPsiToH(rho, psi);
end
% dotH - hyperbolic inner product. Ref: Yamaji, 2008, eqn 4.
function [d] = dotH(a, b)
d = -a(1) * b(1) + a(2) * b(2) + a(3) * b(3);
end
% lineCircleInt - determine intersection parameters for line segment and
% circle. Adopted from Rankin 1989, p.220.
function [t1, t2, visible] = lineCircleInt(x1, y1, x2, y2, xc, yc, r)
visible = 0; % FALSE
t1 = 0.0;
t2 = 1.0;
dx = x2-x1;
dy = y2-y1;
dxc = x1-xc;
dyc = y1-yc;
a = dx*dxc + dy*dyc;
b = dx*dx + dy*dy;
c = dxc*dxc + dyc*dyc - r*r;
disc = a*a - b*c;
if ((disc > 0.0) && (abs(b) > 1e-9))
d = sqrt(disc);
t1 = (-a + d)/b;
t2 = (-a - d)/b;
if (t1 > t2)
t = t1;
t1 = t2;
t2 = t;
end
visible = 1; % TRUE
end
end
% clipLineCircle - clip line segment to circle.
function [cx1, cy1, cx2, cy2, visible] = clipLineCircle(xc, yc, r, x1, y1, x2, y2)
cx1 = x1;
cy1 = y1;
cx2 = x2;
cy2 = y2;
visible = 0; % FALSE
if (((x1 < xc-r) && (x2 < xc-r)) || ((x1 > xc+r) && (x2 > xc+r)))
return;
end
if (((y1 < yc-r) && (y2 < yc-r)) || ((y1 > yc+r) && (y2 > yc+r)))
return;
end
[t1, t2, vis] = lineCircleInt(x1,y1,x2,y2,xc,yc,r);
if (vis == 0)
return;
end
if ((t2 < 0.0) || (t1 > 1.0))
visible = 0; % FALSE
return;
end
if (t1 > 0.0)
cx1 = x1 + (x2-x1) * t1;
cy1 = y1 + (y2-y1) * t1;
end
if (t2 < 1.0)
cx2 = x1 + (x2-x1) * t2;
cy2 = y1 + (y2-y1) * t2;
end
visible = 1; % TRUE
end
% gridHyper - calculate a grid for contouring.
% Input:
% rphi = array (R, phi) ellipse axial ratios
% kappa = weighting parameter
% nnodes = number of grid nodes, n, in x and y
% opts.normalize = normalize by n
% Output:
% z = matrix of z values at the nxn grid nodes.
function [z] = gridHyper(rphi, rmax, kappa, nnodes)
global opts;
n = length(rphi); % number of data points
if n < 2
return; % error
end
z = zeros(nnodes, nnodes);
s = rToZeta(rmax);
dx = (2.0 * s) / (nnodes-1);
dy = dx;
if opts.normalize
f = kappa / (n^(1.0/3.0));
else
f = kappa;
end
% form the data vectors to save time
h = zeros(n,3);
for i = 1:n
h(i,:) = rPhiToH(rphi(i,1), rphi(i,2));
end
x = -s;
for i = 1:nnodes
y = -s;
for j = 1:nnodes
zsum = 0.0;
% back-project node to hyberbolic surface
[rn, pn] = xYToRPhi(x, y, rmax);
hn = rPhiToH(rn, pn);
hn = hn * -1.0; % -a for dotH
for k = 1:n % sum weights
d = dotH(hn, h(k,:));
zt = exp(f * (1.0 - d)); % cumulative distribution
zsum = zsum + zt;
end % k
z(i,j) = zsum;
y = y + dy;
end % j
x = x + dx;
end % i
end
% interpolate - determine linear interpolation point between two nodes.
% Adopted from Vollmer, 1995.
function [x, y, bool] = interpolate(x1, y1, z1, x2, y2, z2, z0)
dz1 = z0-z1;
dz2 = z0-z2;
if (dz1 == 0.0)
x = x1;
y = y1;
bool = 1;
elseif (dz2 == 0.0)
x = x2;
y = y2;
bool = 0;
elseif (((dz1 > 0.0) && (dz2 > 0.0)) || ((dz1 < 0.0) && (dz2 < 0.0)))
x = 0.0;
y = 0.0;
bool = 0; % FALSE
else
dz = z2-z1;
t = dz1/dz;
x = x1 + (x2-x1) * t;
y = y1 + (y2-y1) * t;
bool = 1; % TRUE
end
end
% contourGrid - output one contour level by linear interpolation among grid
% nodes. Adopted from Vollmer, 1995.
function [lines] = contourGrid(lines, x1, y1, x2, y2, grid, level)
[ng,mg] = size(grid);
dnx = (x2-x1)/(ng-1.0);
dny = (y2-y1)/(mg-1.0);
gy1 = y1;
nx = x1;
for i = 1:ng-1
ny = gy1;
nxp = nx + dnx;
for j = 1:mg-1
nyp = ny + dny;
z1 = grid(i,j);
z2 = grid(i+1,j);
z3 = grid(i+1,j+1);
z4 = grid(i,j+1);
found = 0;
[x1,y1,bool] = interpolate(nx,ny,z1,nxp,ny,z2,level);
if bool
found = found+1;
end
[x2,y2,bool] = interpolate(nxp,ny,z2,nxp,nyp,z3,level);
if bool
found = found+2;
end
[x3,y3,bool] = interpolate(nxp,nyp,z3,nx,nyp,z4,level);
if bool
found = found+4;
end
[x4,y4,bool] = interpolate(nx,nyp,z4,nx,ny,z1,level);
if bool
found = found+8;
end
switch (found)
case 3
lines = cLineOut(lines,x1,y1,x2,y2);
case 5
lines = cLineOut(lines,x1,y1,x3,y3);
case 9
lines = cLineOut(lines,x1,y1,x4,y4);
case 6
lines = cLineOut(lines,x2,y2,x3,y3);
case 10
lines = cLineOut(lines,x2,y2,x4,y4);
case 12
lines = cLineOut(lines,x3,y3,x4,y4);
case 15
d1 = sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
d2 = sqrt((x2-x3)*(x2-x3) + (y2-y3)*(y2-y3));
d3 = sqrt((x3-x4)*(x3-x4) + (y3-y4)*(y3-y4));
d4 = sqrt((x4-x1)*(x4-x1) + (y4-y1)*(y4-y1));
if ((d1+d3) < (d2+d4))
lines = cLineOut(lines,x1,y1,x2,y2);
lines = cLineOut(lines,x3,y3,x4,y4);
else
lines = cLineOut(lines,x2,y2,x3,y3);
lines = cLineOut(lines,x1,y1,x4,y4);
end
end % switch
ny = nyp;
end % j
nx = nxp;
end % i
end
% lineOut - output a line segment
function [lines] = lineOut(lines, x1, y1, x2, y2)
lines = [lines; [x1,y1,x2,y2]];
end
% cLineOut - output a line segment clipped to current projection.
function [lines] = cLineOut(lines, x1, y1, x2, y2)
global opts;
if opts.rfp
lines = [lines; [x1,y1,x2,y2]];
else
[cx1, cy1, cx2, cy2, visible] = clipLineCircle(0.0, 0.0, 1.0, x1, y1, x2, y2);
if (visible)
lines = [lines; [cx1,cy1,cx2,cy2]];
else
lines = lines;
end
end
end
% contour - grids data and outputs contours.
function [grid, lines] = contour(rphi, rmax, kappa, nlevels, nnodes)
global opts;
grid = gridHyper(rphi, rmax, kappa, nnodes);
zmax = max(max(grid));
x1 = -1.0;
y1 = -1.0;
x2 = 1.0;
y2 = 1.0;
lines = zeros(0,4);
zinc = zmax/nlevels;
level = 0.0;
for i = 1:nlevels-1
level = level + zinc;
lines = contourGrid(lines, x1, y1, x2, y2, grid, level);
end
end
% drawCircle - output a circle, adopted from Rodgers and Adams, 1976, p. 216.
function [lines] = drawCircle(lines, x, y, radius, n)
ainc = 2.0 * pi/n;
c1 = cos(ainc);
s1 = sin(ainc);
x1 = x + radius;
y1 = y;
for i = 0:n
x2 = x + (x1-x)*c1 - (y1-y)*s1;
y2 = y + (x1-x)*s1 + (y1-y)*c1;
lines = lineOut(lines, x1,y1,x2,y2);
x1 = x2;
y1 = y2;
end
end
% drawTicks - output projection ticks.
function [ticks] = drawTicks(rmax)
global opts;
if opts.ticks
ticks = zeros(0,4);
if opts.rfp
ts = 0.05;
ticks = lineOut(ticks, 0.0, 1.0, 0.0, 1.0-ts);
ticks = lineOut(ticks, 0.0,-1.0, 0.0, -1.0+ts);
%ticks = lineOut(ticks, -0.5, 1.0, -0.5, 1.0-ts);
%ticks = lineOut(ticks, 0.5,-1.0, 0.5, -1.0+ts);
r = 2;
zm = rToZeta(rmax);
while r < rmax
z = rToZeta(r);
t = 2.0 * (z/zm) - 1.0;
ticks = lineOut(ticks, -1.0, t, -1.0+ts, t);
ticks = lineOut(ticks, 1.0, t, 1.0-ts, t);
r = r + 1;
end
else % polar
ts = 0.025;
%ticks = lineOut(ticks, 1.0, 0.0, 1.0-ts, 0.0);
%ticks = lineOut(ticks, -1.0, 0.0, -1.0+ts, 0.0);
%ticks = lineOut(ticks, 0.0, 1.0, 0.0, 1.0-ts);
%ticks = lineOut(ticks, 0.0,-1.0, 0.0, -1.0+ts);
ticks = lineOut(ticks, 0.0,-1.0,0.0,1.0);
ticks = lineOut(ticks,-1.0, 0.0,1.0,0.0);
r = 1;
zm = rToZeta(rmax);
while r < rmax
z = rToZeta(r);
t = z/zm;
ticks = lineOut(ticks, t, 0.0+ts, t, 0.0-ts);
ticks = lineOut(ticks, 0.0+ts, t, 0.0-ts, t);
if z > 0
ticks = lineOut(ticks, -t, 0.0+ts, -t, 0.0-ts);
ticks = lineOut(ticks, 0.0+ts, -t, 0.0-ts, -t);
end
r = r + 1;
end
end
end
end
% drawFrame - output projection frame.
function [frame] = drawFrame()
global opts;
if opts.frame
frame = zeros(0,4);
if opts.rfp
frame = lineOut(frame, -1.0, -1.0, 1.0, -1.0);
frame = lineOut(frame, 1.0, -1.0, 1.0, 1.0);
frame = lineOut(frame, 1.0, 1.0, -1.0, 1.0);
frame = lineOut(frame, -1.0, 1.0, -1.0, -1.0);
else % polar
frame = drawCircle(frame, 0.0, 0.0, 1.0, 360);
end
end
end
function [bool] = hasOption(options, option)
a = strfind(options, option);
bool = (size(a) > 0);
end
function [opts] = getOptions(options)
global opts;
if hasOption(options, 'rad') % radians
opts.angfmt = 0;
elseif hasOption(options, 'deg') % degrees
opts.angfmt = 1;
elseif hasOption(options, 'grd') % gradians
opts.angfmt = 2;
else % radians
opts.angfmt = 0;
end
if hasOption(options, 'eqd') % equidistant (log R, Elliott plot)
opts.proj = 0;
elseif hasOption(options, 'eqa') % equal-area
opts.proj = 1;
elseif hasOption(options, 'stg') % stereographic
opts.proj = 2;
elseif hasOption(options, 'ort') % orthographic
opts.proj = 3;
elseif hasOption(options, 'gno') % gnomic
opts.proj = 4;
elseif hasOption(options, 'lin') % exponential (linerar R)
opts.proj = 5;
elseif hasOption(options, 'rdl') % radial
opts.proj = 6;
else % equidistant (Elliott plot)
opts.proj = 0;
end
if hasOption(options, 'rfp')
opts.rfp = 1;
else % polar
opts.rfp = 0;
end
if hasOption(options, 'nfr')
opts.frame = 0;
else
opts.frame = 1;
end
if hasOption(options, 'ntc')
opts.ticks = 0;
else
opts.ticks = 1;
end
if hasOption(options, 'ngd')
opts.grid = 0;
else
opts.grid = 1;
end
if hasOption(options, 'nnm')
opts.normalize = 0;
else
opts.normalize = 1;
end
if hasOption(options, 'nct')
opts.contour = 0;
elseif hasOption(options, 'ctr')
opts.contour = 1;
else
opts.contour = 1;
end
if hasOption(options, 'gi0')
opts.interp = -1.0;
elseif hasOption(options, 'gi2')
opts.interp = 0.5;
elseif hasOption(options, 'gi3')
opts.interp = 1.0/3.0;
elseif hasOption(options, 'gi4')
opts.interp = 0.25;
elseif hasOption(options, 'gi5')
opts.interp = 0.2;
elseif hasOption(options, 'gi6')
opts.interp = 1.0/6.0;
elseif hasOption(options, 'gi8')
opts.interp = 0.125;
elseif hasOption(options, 'gia')
opts.interp = 0.1;
else
opts.interp = 0.2;
end
end