forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFbgemmFPCommon.h
257 lines (233 loc) · 8.22 KB
/
FbgemmFPCommon.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <fbgemm/FbgemmPackMatrixB.h>
#include <fbgemm/SimdUtils.h>
#include <fbgemm/Types.h>
#include <fbgemm/Utils.h>
#include <array>
#if defined(FBGEMM_FP16_FALLBACK_TO_REF_KERNEL) || \
defined(FBGEMM_FP32_FALLBACK_TO_REF_KERNEL)
#define FBGEMM_USE_REF_KERNEL
#endif
namespace fbgemm {
using partition_array_t = std::array<std::array<std::array<int, 2>, 2>, 121>;
extern partition_array_t partition_avx2;
extern partition_array_t partition_avx512;
template <typename T>
struct GemmParams {
uint64_t k;
float* A;
const T* B;
float beta;
float* C;
uint64_t ldc;
uint64_t b_block_cols;
uint64_t b_block_size;
};
template <typename T>
using funcptr_t = void (*)(GemmParams<T>*);
template <typename T>
using kernel_array_t = std::array<funcptr_t<T>, 15>;
template <typename T>
using isa_descriptor = std::tuple<kernel_array_t<T>, partition_array_t>;
template <typename T>
extern const isa_descriptor<T>& getIsaHandlers(inst_set_t isa, T);
void PackA(int nrow, int ncol, const float* from, int ldim, float* to);
// define this to debug fp16 kernel using a reference C implementation
// #define FBGEMM_FP16_FALLBACK_TO_REF_KERNEL
#ifdef FBGEMM_USE_REF_KERNEL
template <typename T>
FBGEMM_API void ref_kernel(
int kernel_nrows,
GemmParams<T>* gp,
const float* C_base,
int m_total,
int n_total,
int vlen);
#endif
template <typename T>
FBGEMM_API void cblas_gemm_compute(
const matrix_op_t transa,
const int m,
const float* A,
const PackedGemmMatrixB<T>& Bp,
const float beta,
float* C,
int thread_id = 0,
int num_threads = 1);
// autotuned kernel splits for various cases m = 1:mb_max
template <typename T>
void cblas_gemm_compute(
const matrix_op_t transa,
const int m,
const float* A,
const PackedGemmMatrixB<T>& Bp,
const float beta,
float* C,
int thread_id,
int num_threads) {
// ground truth
assert(cpuinfo_initialize());
#ifndef __aarch64__
assert(cpuinfo_has_x86_fma3());
assert(cpuinfo_has_x86_f16c());
#endif
assert(transa == matrix_op_t::NoTranspose);
(void)transa; // Suppress unused variable warning
const auto iset = fbgemmInstructionSet();
// private scratchpad storage
static thread_local std::unique_ptr<std::array<float, 256 * 1024>> scratchpad(
new std::array<float, 256 * 1024>());
const auto& isaHandlers = getIsaHandlers<T>(iset, T());
const auto& kernels = std::get<0>(isaHandlers);
const auto& partition = std::get<1>(isaHandlers);
// constants
const int n = Bp.numCols(), k = Bp.numRows(), ldc = n;
const int mb_max = 120;
#ifdef FBGEMM_USE_REF_KERNEL
const int kernel_ncol_blocks = Bp.kernelNumColBlocks();
// By some reason, if packed B is using packing layout for avx2, we just use
// avx2 even if avx512 is available.
const int simd_width =
#ifndef __aarch64__
(iset == inst_set_t::avx512 || iset == inst_set_t::avx512_vnni) &&
(Bp.blockColSize() == 16 * kernel_ncol_blocks)
? simd_info<inst_set_t::avx512>::WIDTH_32BIT_ELEMS
: simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
#else
simd_info<inst_set_t::avx2>::WIDTH_32BIT_ELEMS;
(void)kernel_ncol_blocks;
(void)kernels;
#endif
#endif
GemmParams<T> gp;
int i_begin, i_end;
i_begin = 0;
i_end = m;
for (auto m0 = i_begin; m0 < i_end; m0 += mb_max) {
int mb = std::min(mb_max, i_end - m0);
assert(mb < static_cast<int64_t>(partition.size()));
for (auto k_ind = 0; k_ind < k; k_ind += Bp.blockRowSize()) {
// set up proper accumulation to avoid "Nan" problem
float beta_;
if (k_ind == 0) {
// accumulate of beta != 0.0
// do not!!! accumulate otherwise
beta_ = beta;
} else {
// always accumulate with beta_ = 1.0f
beta_ = 1.0f;
}
const int kb = std::min(Bp.blockRowSize(), Bp.numRows() - k_ind);
auto m1 = m0;
auto const num_cycles = partition[mb].size();
for (size_t c = 0; c < num_cycles; ++c) {
auto kernel_nrows = partition[mb][c][0];
auto nkernel_nrows = partition[mb][c][1];
auto m_start = m1;
auto m_end = m1 + kernel_nrows * nkernel_nrows;
for (auto m2 = m_start; m2 < m_end; m2 += kernel_nrows) {
assert(kernel_nrows * kb < static_cast<int64_t>(scratchpad->size()));
if (m != 1) {
PackA(kernel_nrows, kb, &A[m2 * k + k_ind], k, scratchpad->data());
gp.A = scratchpad->data();
} else {
// When m == 1, it is actually vector matrix multiplication. We
// don't need to do the transposition for packA here. Instead, we
// can just pass the pointer of the original A matrix buffer to the
// packed A buffer.
gp.A = const_cast<float*>(&A[k_ind]);
}
int nbcol = n / Bp.blockColSize();
gp.k = kb;
gp.B = &(Bp(k_ind, 0));
gp.beta = beta_;
gp.C = &C[m2 * ldc];
gp.ldc = ldc * sizeof(C[0]);
gp.b_block_cols = nbcol;
gp.b_block_size = gp.k * Bp.blockColSize() * sizeof(gp.B[0]);
if ((n % Bp.blockColSize()) == 0) {
int64_t jb_begin, jb_end;
fbgemmPartition1D(
thread_id, num_threads, gp.b_block_cols, jb_begin, jb_end);
gp.B += gp.k * Bp.blockColSize() * jb_begin;
gp.C += Bp.blockColSize() * jb_begin;
gp.b_block_cols = jb_end - jb_begin;
if (gp.b_block_cols) {
#ifdef FBGEMM_USE_REF_KERNEL
ref_kernel<T>(kernel_nrows, &gp, C, m, n, simd_width);
#else
kernels[kernel_nrows](&gp);
#endif
}
} else {
int last_blk_col = nbcol * Bp.blockColSize();
if (nbcol) {
int64_t jb_begin, jb_end;
fbgemmPartition1D(
thread_id, num_threads, gp.b_block_cols, jb_begin, jb_end);
gp.B += gp.k * Bp.blockColSize() * jb_begin;
gp.C += Bp.blockColSize() * jb_begin;
gp.b_block_cols = jb_end - jb_begin;
if (gp.b_block_cols) {
#ifdef FBGEMM_USE_REF_KERNEL
ref_kernel(kernel_nrows, &gp, C, m, n, simd_width);
#else
kernels[kernel_nrows](&gp);
#endif
}
}
// use one thread to handle the fringe cases
if (thread_id == num_threads - 1) {
// leftover
const int rem = n - last_blk_col;
(void)rem; // Suppress unused variable warning
assert(rem < Bp.blockColSize());
// small temporary buffer: the size should be larger than the
// required kernel_nrow x kernel_ncols elements computed in the
// registers.
std::array<float, 14 * 32> c_tmp{0.f};
assert(
static_cast<int64_t>(c_tmp.size()) >=
kernel_nrows * Bp.blockColSize());
gp.B = &(Bp(k_ind, last_blk_col));
gp.C = c_tmp.data();
gp.ldc = Bp.blockColSize() * sizeof(C[0]);
gp.b_block_cols = 1;
#ifdef FBGEMM_USE_REF_KERNEL
ref_kernel<T>(
kernel_nrows, &gp, c_tmp.data(), 14, 32, simd_width);
#else
kernels[kernel_nrows](&gp);
#endif
for (int i = 0; i < kernel_nrows; i++) {
// Todo: use assembly
for (int j = last_blk_col; j < n; j++) {
assert(
i * Bp.blockColSize() + (j - last_blk_col) <
static_cast<int64_t>(sizeof(c_tmp) / sizeof(c_tmp[0])));
if (beta_ == 0.f) {
C[(m2 + i) * ldc + j] =
c_tmp[i * Bp.blockColSize() + (j - last_blk_col)];
} else {
C[(m2 + i) * ldc + j] = beta_ * C[(m2 + i) * ldc + j] +
c_tmp[i * Bp.blockColSize() + (j - last_blk_col)];
}
}
}
}
}
}
m1 += kernel_nrows * nkernel_nrows;
}
}
}
}
#undef FBGEMM_USE_REF_KERNEL
} // namespace fbgemm