-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gpt2.py
557 lines (481 loc) · 26.1 KB
/
train_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
from dataclasses import dataclass
import os
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
import time
import inspect
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from hellaswag import get_most_likely_row, iterate_examples, render_example
# ---------------------------------------------------------------------------------------
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
# vocab_size: int = 50257 # number of tokens: 50,000 BPE + 256 bytes tokens + 1 <|endoftext}> token
vocab_size: int = 50304 # this is a multiple of 128, extra tokens would be ignored, being a muktiple of two makes it use more optimal number of kernels (and no need for kernels for stragglers). Despite the more memory, the computation was faster for Andrej Karpathy by ~4%.
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
class CausalSelfAttention(nn.Module):
def __init__(self, config: GPTConfig, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) # q, k, v
# output_projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# not really a 'bias', more of a mask but following the the OpenAI/HF naming
self.register_buffer("bias", torch.tril(
torch.ones(config.block_size, config.block_size)
).view(1, 1, config.block_size, config.block_size))
# [1, 0, 0, 0]
# [1, 1, 0, 0]
# [1, 1, 1, 0]
# [1, 1, 1, 1]
# tril creates a lower triangular matrix from an input tensor
# creates a causal self attn mask of shape (seqLen, seqLen)
def forward(self, x):
B, T, C = x.size()
qkv: torch.Tensor = self.c_attn(x)
q, k, v = qkv.split(split_size = self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# attention (materializes the large (T, T) matrix for queries and keys)
# att: torch.Tensor = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) # making the attention causal
# att = F.softmax(att, dim=-1) # upper triangle will be zero, since exp(-inf) ~= 0, and we are replacing with -inf where mask == 0
# # hence causal self attention
# y = att @ v # (B, nh, T, hs)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
y = y.transpose(1, 2).contiguous().view(B, T, C)
# re-assemble all heads output side by side
y = self.c_proj(y) # output projection
return y
class MLP(nn.Module):
def __init__(self, config: GPTConfig, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config: GPTConfig, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
self.config: GPTConfig = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([
Block(config) for _ in range(config.n_layer)
]),
ln_f = nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # GPT-2 uses no bias
# weight sharing scheme, they both have the same job, just in reverse
self.transformer.wte.weight = self.lm_head.weight
# init params
self.apply(self._init_weights)
def _init_weights(self, module):
# std weight determined from source code of gpt-2 relased by openai
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5 # 1 / √(2* num of times noise added by the residual layer)
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets = None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T},\
block size is {self.config.block_size}"
# forward the token and pos embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos) # pe of shape (T, n_embd), this will be broadcasted later
tok_emb = self.transformer.wte(idx) # te of shape (B, T, n_embd)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and classifier
x = self.transformer.ln_f(x) # (B, T, n_embd)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
) # flattening logits (B, T, vocab_size) -> (B * T, vocab_size)
# # flattening targets from (B, T) -> (B * T )
# this will automatically compute the softmax of the input logits before computing NLL
return logits, loss
@classmethod
def from_pretrained(cls, model_type: str):
"""Loads pretrained GPT-2 model weights from huggingface
Args:
model_type (str): Model type should be one of
"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print(f"loading weights from pretrained gpt: {model_type}")
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / bias buffer
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')]
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')]
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight',
'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla
# this means we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, device):
# start with all of the candidate parameters that require grad
param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad}
# create optim groups, any parameters that is 2D will be weight decayed, otherwise no
# i.e., all weight tensors in matmuls + embeddings decay, all biases and layernorms don't
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and torch.device('cuda') == device
print(f'Using fused AdamW: {use_fused}')
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
def get_device():
"""
Returns the best available device: CUDA, MPS (Apple Silicon), or CPU.
"""
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = torch.device("mps")
print("Using MPS (Apple Silicon GPU)")
else:
device = torch.device("cpu")
print("Using CPU")
return device
# ---------------------------------------------------------------------------------------
# LR Scheduler
max_lr = 6e-4
min_lr = max_lr * 0.1
warmup_steps = 715
max_steps = 19073 # 19073 steps ~ 1 epoch, if data is 10B tokens, and batch size is 0.5M tokens
def get_lr(it):
if it < warmup_steps:
return max_lr * (it + 1) / warmup_steps
if it > max_steps:
return min_lr
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <=1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # range (-1, 1) -> (0, 1)
return min_lr + coeff * (max_lr - min_lr) # should this not be max_lr - coeff * (max_lr - min_lr) ??
# ---------------------------------------------------------------------------------------
import tiktoken
import numpy as np
def load_tokens(filename):
npt = np.load(filename)
npt = npt.astype(np.int32) # added after video
ptt = torch.tensor(npt, dtype=torch.long)
return ptt
class DataLoaderLite:
def __init__(self, B, T, process_rank: int, num_processes: int, split: str) -> None:
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
assert split in {'train', 'val'}
self.split = split
data_root = os.path.join(os.path.dirname(__file__), 'edu_fineweb10')
shards = os.listdir(data_root)
shards = [os.path.join(data_root, shard) for shard in shards if split in shard]
assert len(shards) > 0, f"No shards found for split: {split}"
self.shards = shards
self.starting_position = self.B * self.T * self.process_rank
self.reset()
def reset(self):
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
# state
self.current_position = self.starting_position
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position : self.current_position + (B * T) + 1]
x = buf[:-1].view(B, T) # inputs
y = buf[1:].view(B, T) # targets
# advance the position in the tensor
self.current_position += B * T * self.num_processes
# if loading the next batch will be out of bounds, then go to the next shard
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens): # checking if all the parallel processes can get another valid batch of data or not
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.starting_position
return x, y
# -----------------------------------------------------------------------------
# simple launch:
# python train_gpt2.py
# DDP launch for e.g. 8 GPUs:
# torchrun --standalone --nproc_per_node=8 train_gpt2.py
def test_code():
# simple launch
# python train_gpt2.py
# DDP launch for e.g. 8 GPUs
#torchrun --standalone --nproc_per_node=8 train_gpt2.py
# using torch distributed data parallel to train in multi-gpu setup. Do not use torch.nn.DataParallel
# as it is deprecated, it is legacy, and possibly slower than torch.distributed.
from torch.distributed import init_process_group, destroy_process_group
enc = tiktoken.get_encoding("gpt2")
# setup DDP distributed data parallel
# torchrun command sets the env variables RANK, LOCAL_RANK, WORLD_SIZE, MASTER_ADDR, MASTER_PORT
# torch.distributed.init_process_group() will use these environment variables to initialize the distributed process group
ddp = int(os.environ.get('RANK', -1)) != -1
if ddp:
# use of DDP at the moment demands CUDA, we setthe the device appropriately according to rank
assert torch.cuda.is_available(), "for now I think DDP requires CUDA"
init_process_group(backend='nccl') # what is NCCL? NCCL (NVIDIA Collective Communications Library) is a high-performance GPU-to-GPU communication library optimized for NVIDIA GPUs. It's used as the backend for distributed training in PyTorch, enabling efficient multi-GPU and multi-node communication, which is crucial for distributed deep learning workloads.
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0
else:
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
device = get_device()
master_process = True
device_type = "cuda" if device.startswith("cuda") else "cpu"
seed = 1337
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
# model = GPT.from_pretrained('gpt2')
total_batch_size = 2**19 # 524_288, ~0.5M
# B, T = 8, 32 # for my mac
B = 64 # micro batch size
T = 1024 # sequence length
eval_steps = 250
save_steps = 5000
assert total_batch_size % (B * T * ddp_world_size) == 0, "make sure total batch size is divisible by B * T * ddp_world_size"
grad_accum_steps = total_batch_size // (B * T * ddp_world_size)
if master_process:
print(f'Total desired batch size: {total_batch_size}')
print(f"=> calculated gradient accumulation steps: {grad_accum_steps}")
# get a data batch
train_loader = DataLoaderLite(B, T, process_rank=ddp_rank, num_processes=ddp_world_size, split='train')
val_loader = DataLoaderLite(B, T, process_rank=ddp_rank, num_processes=ddp_world_size, split='val')
torch.set_float32_matmul_precision('high')
# get logits
model = GPT(GPTConfig())
print(f"didn't crash yay!")
model.to(device)
use_compile = torch.cuda.is_available() and False
# TODO: uncomment when want to compile model on CUDA
if use_compile:
model = torch.compile(model)
if ddp:
model = DDP(model, device_ids=[ddp_local_rank]) # ddp does all_reduce and computes the average of the gradients across all the GPUs, and then deposits the averaged gradients to each of the GPUs
raw_model = model.module if ddp else model # if ddp, then we need to access the module of the model, else just the model
# logits, loss = model(x, y)
if torch.cuda.is_available():
sync = lambda: torch.cuda.synchronize()
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
sync = lambda: torch.mps.synchronize()
# optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device=device)
log_dir = "log"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"log.txt")
with open(log_file, "w") as f: # open for writing to clear the file
pass
for step in range(max_steps):
t0 = time.time()
last_step = (step == (max_steps - 1))
loss_accum = 0.0
if step % eval_steps == 0 or last_step:
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss_accum = 0.0
val_loss_steps = 20
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
if ddp:
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
if master_process:
print(f"step {step:4d} | val loss: {val_loss_accum.item():.4f}")
with open(log_file, "a") as f:
f.write(f"step {step:4d} | val loss: {val_loss_accum.item():.4f}\n")
if step > 0 and (step % save_steps == 0 or last_step):
checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
checkpoint = {
"model": raw_model.state_dict(),
"config": raw_model.config,
"step": step,
"val_loss": val_loss_accum.item(),
}
torch.save(checkpoint, checkpoint_path)
if (step % eval_steps == 0 or last_step) and (not use_compile):
num_correct_norm = 0
num_total = 0
for i, example in enumerate(iterate_examples("val")):
# hellaswag evaluation
# only process examples where i % ddp_world_size == ddp_rank
if i % ddp_world_size != ddp_rank:
continue
# render the example into tokens and labels
_, tokens, mask, label = render_example(example)
tokens = tokens.to(device)
mask = mask.to(device)
with torch.no_grad():
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(tokens, mask)
_, pred_norm = get_most_likely_row(tokens, mask, logits, return_loss=False)
num_total += 1
num_correct_norm += int(pred_norm == label)
# reduce the stats across all the processes
if ddp:
num_correct_norm = torch.tensor(num_correct_norm, device=device, dtype=torch.long)
num_total = torch.tensor(num_total, device=device, dtype=torch.long)
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM)
dist.all_reduce(num_total, op=dist.ReduceOp.SUM)
num_correct_norm = num_correct_norm.item()
num_total = num_total.item()
acc_norm = num_correct_norm / num_total
if master_process:
print(f"step {step:4d} | Hellaswag acc: {num_correct_norm}/{num_total} = {acc_norm:.4f}")
with open(log_file, "a") as f:
f.write(f"step {step:4d} | Hellaswag acc: {num_correct_norm}/{num_total} = {acc_norm:.4f}\n")
if ((step > 0 and step % eval_steps == 0) or last_step) and (not use_compile) and master_process:
model.eval()
num_return_sequences = 4
max_length = 32
tokens = torch.tensor(enc.encode("Hello, I am a language model"), dtype=torch.long)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
xgen = tokens.to(device)
sample_rng = torch.Generator(device=device)
sample_rng.manual_seed(seed + ddp_rank)
while xgen.size(1) < max_length:
with torch.no_grad():
logits, _ = model(xgen)
logits = logits[:, -1, :] # last time step
probs = F.softmax(logits, dim=-1)
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# select a token from the top k probabilities
# note: multinomdial does not demand the input to sum to 1
ix = torch.multinomial(topk_probs, num_samples=1, generator=sample_rng)
# gather the corresponding indices
xcol = torch.gather(topk_indices, dim=-1, index=ix)
xgen = torch.cat((xgen, xcol), dim=1)
# print the generated text
for i in range(num_return_sequences):
tokens = xgen[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(f'rank {ddp_rank} sample {i}: {decoded}')
# train
model.train()
optimizer.zero_grad()
loss_accum = 0.0
for micro_step in range(grad_accum_steps):
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
# NOTE with torch.autocast(device_type=device, dtype=torch.bfloat16): # not supported for mps, only for ampere nvidia gpus and above
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(x, y) # refer to video about which specific page to refer https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html#adding-torch-autocast
loss = loss / grad_accum_steps
# NOTE we need to do this, because lets say a batch size of 8, the loss is mean reduction of the batch, so uses the normalizer 1/8 for the
# sum of each elements loss. hence to in case of grad accum, if each batch size of 1 is accumulated over 8 steps, then the 1/8 normalizer is lost.
loss_accum += loss.detach()
if ddp:
# if we don't do this, then the gradients will be synchronized across the GPUs, at every backward step. We want to do at the end of all grad accum steps.
# the below hack is from Andrej, and not use the no_sync context manager, as it was leading to code duplication.
# we only want to sync the gradients at the end of the grad accum steps, not after every micro_step
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
loss.backward() #.backward() always does += on existing gradients, hence important to zero grad (unless grad accumulation)
if ddp:
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG) # will take average across all the ranks/gpus and redistribute the averaged loss to all the GPUs
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # if we get a bad data batch, a really high loss can give a really high gradient, which can provide a big shock to the model
# gradient norm clipping is then used to ensure that the updates to the model are not very big/shocking.
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
sync()
t1 = time.time()
dt = (t1 - t0) # time diff in milliseconds
tokens_per_sec = (train_loader.B * train_loader.T * grad_accum_steps) / dt
if master_process:
print(f"step {step:4d} | loss: {loss_accum.item():.6f} | lr: {lr:.4e} | norm: {norm:.4f} | dt: {dt * 1000:.2f}ms | tok/sec: {tokens_per_sec:.2f}")
if ddp:
destroy_process_group()
# NOTE: IMPORTANT INSIGHT
# 1. We expect the loss to still decrease on the above small dataset.
# 2. Two things to note: 1) Our dataset is very biased, and covers only a very small portion of the 50,257 tokens
# 2) Hence when training, the model would just try to eliminate/"forget" the importance of the other tokens that never occur in the dataset
# by for example driving the bias for these terms to -inf. This is the cause behind the easy gains that will be made .
# 3. Compression ratio is 3:1 (3 characters ~= 1 token)
if __name__ == "__main__":
test_code()