-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_dist_part.py
381 lines (340 loc) · 12.4 KB
/
test_dist_part.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import json
import os
import tempfile
import dgl
import numpy as np
import pyarrow.parquet as pq
import pytest
import torch
from dgl.data.utils import load_graphs, load_tensors
from dgl.distributed.partition import (
_etype_tuple_to_str,
_get_inner_edge_mask,
_get_inner_node_mask,
load_partition,
RESERVED_FIELD_DTYPE,
)
from distpartitioning import array_readwriter
from distpartitioning.utils import generate_read_list
from pytest_utils import create_chunked_dataset
from tools.verification_utils import (
verify_graph_feats,
verify_partition_data_types,
verify_partition_formats,
)
def _test_chunk_graph(
num_chunks,
data_fmt="numpy",
edges_fmt="csv",
vector_rows=False,
num_chunks_nodes=None,
num_chunks_edges=None,
num_chunks_node_data=None,
num_chunks_edge_data=None,
):
with tempfile.TemporaryDirectory() as root_dir:
g = create_chunked_dataset(
root_dir,
num_chunks,
data_fmt=data_fmt,
edges_fmt=edges_fmt,
vector_rows=vector_rows,
num_chunks_nodes=num_chunks_nodes,
num_chunks_edges=num_chunks_edges,
num_chunks_node_data=num_chunks_node_data,
num_chunks_edge_data=num_chunks_edge_data,
)
# check metadata.json
output_dir = os.path.join(root_dir, "chunked-data")
json_file = os.path.join(output_dir, "metadata.json")
assert os.path.isfile(json_file)
with open(json_file, "rb") as f:
meta_data = json.load(f)
assert meta_data["graph_name"] == "mag240m"
assert len(meta_data["num_nodes_per_chunk"][0]) == num_chunks
# check edge_index
output_edge_index_dir = os.path.join(output_dir, "edge_index")
for c_etype in g.canonical_etypes:
c_etype_str = _etype_tuple_to_str(c_etype)
if num_chunks_edges is None:
n_chunks = num_chunks
else:
n_chunks = num_chunks_edges
for i in range(n_chunks):
fname = os.path.join(
output_edge_index_dir, f"{c_etype_str}{i}.txt"
)
assert os.path.isfile(fname)
if edges_fmt == "csv":
with open(fname, "r") as f:
header = f.readline()
num1, num2 = header.rstrip().split(" ")
assert isinstance(int(num1), int)
assert isinstance(int(num2), int)
elif edges_fmt == "parquet":
metadata = pq.read_metadata(fname)
assert metadata.num_columns == 2
else:
assert False, f"Invalid edges_fmt: {edges_fmt}"
# check node/edge_data
suffix = "npy" if data_fmt == "numpy" else "parquet"
reader_fmt_meta = {"name": data_fmt}
def test_data(sub_dir, feat, expected_data, expected_shape, num_chunks):
data = []
for i in range(num_chunks):
fname = os.path.join(sub_dir, f"{feat}-{i}.{suffix}")
assert os.path.isfile(fname), f"{fname} cannot be found."
feat_array = array_readwriter.get_array_parser(
**reader_fmt_meta
).read(fname)
assert feat_array.shape[0] == expected_shape
data.append(feat_array)
data = np.concatenate(data, 0)
assert torch.equal(torch.from_numpy(data), expected_data)
output_node_data_dir = os.path.join(output_dir, "node_data")
for ntype in g.ntypes:
sub_dir = os.path.join(output_node_data_dir, ntype)
if isinstance(num_chunks_node_data, int):
chunks_data = num_chunks_node_data
elif isinstance(num_chunks_node_data, dict):
chunks_data = num_chunks_node_data.get(ntype, num_chunks)
else:
chunks_data = num_chunks
for feat, data in g.nodes[ntype].data.items():
if isinstance(chunks_data, dict):
n_chunks = chunks_data.get(feat, num_chunks)
else:
n_chunks = chunks_data
test_data(
sub_dir,
feat,
data,
g.num_nodes(ntype) // n_chunks,
n_chunks,
)
output_edge_data_dir = os.path.join(output_dir, "edge_data")
for c_etype in g.canonical_etypes:
c_etype_str = _etype_tuple_to_str(c_etype)
sub_dir = os.path.join(output_edge_data_dir, c_etype_str)
if isinstance(num_chunks_edge_data, int):
chunks_data = num_chunks_edge_data
elif isinstance(num_chunks_edge_data, dict):
chunks_data = num_chunks_edge_data.get(c_etype, num_chunks)
else:
chunks_data = num_chunks
for feat, data in g.edges[c_etype].data.items():
if isinstance(chunks_data, dict):
n_chunks = chunks_data.get(feat, num_chunks)
else:
n_chunks = chunks_data
test_data(
sub_dir,
feat,
data,
g.num_edges(c_etype) // n_chunks,
n_chunks,
)
@pytest.mark.parametrize("num_chunks", [1, 8])
@pytest.mark.parametrize("data_fmt", ["numpy", "parquet"])
@pytest.mark.parametrize("edges_fmt", ["csv", "parquet"])
def test_chunk_graph_basics(num_chunks, data_fmt, edges_fmt):
_test_chunk_graph(num_chunks, data_fmt=data_fmt, edges_fmt=edges_fmt)
@pytest.mark.parametrize("num_chunks", [1, 8])
@pytest.mark.parametrize("vector_rows", [True, False])
def test_chunk_graph_vector_rows(num_chunks, vector_rows):
_test_chunk_graph(
num_chunks,
data_fmt="parquet",
edges_fmt="parquet",
vector_rows=vector_rows,
)
@pytest.mark.parametrize(
"num_chunks, "
"num_chunks_nodes, "
"num_chunks_edges, "
"num_chunks_node_data, "
"num_chunks_edge_data",
[
[1, None, None, None, None],
[8, None, None, None, None],
[4, 4, 4, 8, 12],
[4, 4, 4, {"paper": 10}, {("author", "writes", "paper"): 24}],
[
4,
4,
4,
{"paper": {"feat": 10}},
{("author", "writes", "paper"): {"year": 24}},
],
],
)
def test_chunk_graph_arbitrary_chunks(
num_chunks,
num_chunks_nodes,
num_chunks_edges,
num_chunks_node_data,
num_chunks_edge_data,
):
_test_chunk_graph(
num_chunks,
num_chunks_nodes=num_chunks_nodes,
num_chunks_edges=num_chunks_edges,
num_chunks_node_data=num_chunks_node_data,
num_chunks_edge_data=num_chunks_edge_data,
)
def _test_pipeline(
num_chunks,
num_parts,
world_size,
graph_formats=None,
data_fmt="numpy",
num_chunks_nodes=None,
num_chunks_edges=None,
num_chunks_node_data=None,
num_chunks_edge_data=None,
use_verify_partitions=False,
):
if num_parts % world_size != 0:
# num_parts should be a multiple of world_size
return
with tempfile.TemporaryDirectory() as root_dir:
g = create_chunked_dataset(
root_dir,
num_chunks,
data_fmt=data_fmt,
num_chunks_nodes=num_chunks_nodes,
num_chunks_edges=num_chunks_edges,
num_chunks_node_data=num_chunks_node_data,
num_chunks_edge_data=num_chunks_edge_data,
)
# Step1: graph partition
in_dir = os.path.join(root_dir, "chunked-data")
output_dir = os.path.join(root_dir, "parted_data")
os.system(
"python3 tools/partition_algo/random_partition.py "
"--in_dir {} --out_dir {} --num_partitions {}".format(
in_dir, output_dir, num_parts
)
)
for ntype in ["author", "institution", "paper"]:
fname = os.path.join(output_dir, "{}.txt".format(ntype))
with open(fname, "r") as f:
header = f.readline().rstrip()
assert isinstance(int(header), int)
# Step2: data dispatch
partition_dir = os.path.join(root_dir, "parted_data")
out_dir = os.path.join(root_dir, "partitioned")
ip_config = os.path.join(root_dir, "ip_config.txt")
with open(ip_config, "w") as f:
for i in range(world_size):
f.write(f"127.0.0.{i + 1}\n")
cmd = "python3 tools/dispatch_data.py"
cmd += f" --in-dir {in_dir}"
cmd += f" --partitions-dir {partition_dir}"
cmd += f" --out-dir {out_dir}"
cmd += f" --ip-config {ip_config}"
cmd += " --ssh-port 22"
cmd += " --process-group-timeout 60"
cmd += " --save-orig-nids"
cmd += " --save-orig-eids"
cmd += f" --graph-formats {graph_formats}" if graph_formats else ""
os.system(cmd)
# check if verify_partitions.py is used for validation.
if use_verify_partitions:
cmd = "python3 tools/verify_partitions.py "
cmd += f" --orig-dataset-dir {in_dir}"
cmd += f" --part-graph {out_dir}"
cmd += f" --partitions-dir {output_dir}"
os.system(cmd)
return
# read original node/edge IDs
def read_orig_ids(fname):
orig_ids = {}
for i in range(num_parts):
ids_path = os.path.join(out_dir, f"part{i}", fname)
part_ids = load_tensors(ids_path)
for type, data in part_ids.items():
if type not in orig_ids:
orig_ids[type] = data
else:
orig_ids[type] = torch.cat((orig_ids[type], data))
return orig_ids
orig_nids = read_orig_ids("orig_nids.dgl")
orig_eids = read_orig_ids("orig_eids.dgl")
# load partitions and verify
part_config = os.path.join(out_dir, "metadata.json")
for i in range(num_parts):
part_g, node_feats, edge_feats, gpb, _, _, _ = load_partition(
part_config, i
)
verify_partition_data_types(part_g)
verify_partition_formats(part_g, graph_formats)
verify_graph_feats(
g, gpb, part_g, node_feats, edge_feats, orig_nids, orig_eids
)
@pytest.mark.parametrize(
"num_chunks, num_parts, world_size",
[[4, 4, 4], [8, 4, 2], [8, 4, 4], [9, 6, 3], [11, 11, 1], [11, 4, 1]],
)
def test_pipeline_basics(num_chunks, num_parts, world_size):
_test_pipeline(num_chunks, num_parts, world_size)
_test_pipeline(
num_chunks, num_parts, world_size, use_verify_partitions=True
)
@pytest.mark.parametrize(
"graph_formats", [None, "csc", "coo,csc", "coo,csc,csr"]
)
def test_pipeline_formats(graph_formats):
_test_pipeline(4, 4, 4, graph_formats)
@pytest.mark.parametrize(
"num_chunks, "
"num_parts, "
"world_size, "
"num_chunks_node_data, "
"num_chunks_edge_data",
[
# Test cases where no. of chunks more than
# no. of partitions
[8, 4, 4, 8, 8],
[8, 4, 2, 8, 8],
[9, 7, 5, 9, 9],
[8, 8, 4, 8, 8],
# Test cases where no. of chunks smaller
# than no. of partitions
[7, 8, 4, 7, 7],
[1, 8, 4, 1, 1],
[1, 4, 4, 1, 1],
[3, 4, 4, 3, 3],
[1, 4, 2, 1, 1],
[3, 4, 2, 3, 3],
[1, 5, 3, 1, 1],
],
)
def test_pipeline_arbitrary_chunks(
num_chunks,
num_parts,
world_size,
num_chunks_node_data,
num_chunks_edge_data,
):
_test_pipeline(
num_chunks,
num_parts,
world_size,
num_chunks_node_data=num_chunks_node_data,
num_chunks_edge_data=num_chunks_edge_data,
)
@pytest.mark.parametrize(
"graph_formats", [None, "csc", "coo,csc", "coo,csc,csr"]
)
def test_pipeline_formats(graph_formats):
_test_pipeline(4, 4, 4, graph_formats)
@pytest.mark.parametrize("data_fmt", ["numpy", "parquet"])
def test_pipeline_feature_format(data_fmt):
_test_pipeline(4, 4, 4, data_fmt=data_fmt)
def test_utils_generate_read_list():
read_list = generate_read_list(10, 4)
assert np.array_equal(read_list[0], np.array([0, 1, 2]))
assert np.array_equal(read_list[1], np.array([3, 4, 5]))
assert np.array_equal(read_list[2], np.array([6, 7]))
assert np.array_equal(read_list[3], np.array([8, 9]))