Skip to content

《动手学大模型Dive into LLMs》系列编程实践教程

Notifications You must be signed in to change notification settings

som-don/dive-into-llms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 

Repository files navigation

《动手学大模型》系列编程实践教程

version Status-building PRs-Welcome stars FORK Issues

项目动机

《动手学大模型》系列编程实践教程,由上海交通大学2024年春季《人工智能安全技术》课程(NIS3353)讲义拓展而来(教师:张倬胜),旨在提供大模型相关的入门编程参考。通过简单实践,帮助同学快速入门大模型,更好地开展课程设计或学术研究。

教程目录

教程内容 简介 地址
微调与部署 预训练模型微调与部署指南:想提升预训练模型在指定任务上的性能?让我们选择合适的预训练模型,在特定任务上进行微调,并将微调后的模型部署成方便使用的Demo! [Slides] [Tutorial]
提示学习与思维链 大模型的API调用与推理指南:“AI在线求鼓励?大模型对一些问题的回答令人大跌眼镜,但它可能只是想要一句「鼓励」” [Slides] [Tutorial]
知识编辑 语言模型的编辑方法和工具:想操控语言模型在对指定知识的记忆?让我们选择合适的编辑方法,对特定知识进行编辑,并将对编辑后的模型进行验证! [Slides] [Tutorial]
模型水印 语言模型的文本水印:在语言模型生成的内容中嵌入人类不可见的水印 [Slides] [Tutorial]
越狱攻击 想要得到更好的安全,要先从学会攻击开始。让我们了解越狱攻击如何撬开大模型的嘴! [Slides] [Tutorial]
多模态模型 作为能够更充分模拟真实世界的多模态大语言模型,其如何实现更强大的多模态理解和生成能力?多模态大语言模型是否能够帮助实现AGI? [Slides] [Tutorial]
大模型智能体与安全 大模型智能体迈向了未来操作系统之旅。然而,大模型在开放智能体场景中能意识到风险威胁吗? [Slides] [Tutorial]

免责声明

本教程所有内容仅仅来自于贡献者的个人经验、互联网数据、日常科研工作中的相关积累。所有技巧仅供参考,不保证百分百正确。若有任何问题,欢迎提交 Issue 或 PR。另本项目所用徽章来自互联网,如侵犯了您的图片版权请联系我们删除,谢谢。

欢迎贡献

本教程目前是一个正在进行中的项目,如有疏漏在所难免,欢迎任何的PR及issue讨论。

贡献者列表

感谢以下老师和同学对本项目的支持与贡献:

上海交通大学 袁童鑫

上海交通大学 马欣贝

上海交通大学 何志威

上海交通大学 杜巍

新加坡国立大学 费豪

About

《动手学大模型Dive into LLMs》系列编程实践教程

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published