forked from openwebwork/pg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistributions.pm
581 lines (497 loc) · 14.5 KB
/
Distributions.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#package Statistics::Distributions;
package Distributions;
# In order to use the functions from this module in your WebWork problems, you have to load PGstatisticsmacros.pl
# The documentation at the end of this file is slightly modified for WebWork by Maria Voloshina, University of Rochester.
use strict;
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK);
use constant PI => 3.1415926536;
use constant SIGNIFICANT => 6; # number of significant digits to be returned
require Exporter;
#@ISA = qw(Exporter AutoLoader);
@ISA = qw(Exporter);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
@EXPORT_OK = qw(chisqrdistr tdistr fdistr udistr uprob chisqrprob tprob fprob expdistr expprob );
$VERSION = '0.07';
# Preloaded methods go here.
sub chisqrdistr { # Percentage points X^2(x^2,n)
# chisqrdistr(n,p)
# Returns the right sided quantile associated with the
# chi squared distribution of df=n and prob. p
# i.e. If the value returned is $x then the area
# to the right of the dist. with df=n is p.
my ($n, $p) = @_;
if ($n <= 0 || abs($n) - abs(int($n)) != 0) {
die "Invalid n: $n\n"; # degree of freedom
}
if ($p <= 0 || $p > 1) {
die "Invalid p: $p\n";
}
return precision_string(_subchisqr($n, $p));
}
sub udistr { # Percentage points N(0,1^2)
# udistr(p)
# Returns the right sided quantile associated with the normal
# distribution. That is, it returns the value of Z so that the area to
# the RIGHT of Z is equal to p.
my ($p) = (@_);
if ($p > 1 || $p <= 0) {
die "Invalid p: $p\n";
}
return precision_string(_subu($p));
}
sub tdistr { # Percentage points t(x,n)
# tdistr(n,p)
# Returns the right sided quantile associated with the t distribution
# with n degrees of freedom. That is, it returns the value of t so
# that the area to the RIGHT of t with N degrees of freedom is equal
# to p.
my ($n, $p) = @_;
if ($n <= 0 || abs($n) - abs(int($n)) != 0) {
die "Invalid n: $n\n";
}
if ($p <= 0 || $p >= 1) {
die "Invalid p: $p\n";
}
return precision_string(_subt($n, $p));
}
sub fdistr { # Percentage points F(x,n1,n2)
# fdistr(n1,n2,x)
# Returns the right sided quantile associated with the F distribution
# with n1 and n2 degrees of freedom. That is, it returns the value of F so
# that the area to the RIGHT of F with n1 and n2 degrees of freedom is equal
# to p.
my ($n, $m, $p) = @_;
if (($n <= 0) || ((abs($n) - (abs(int($n)))) != 0)) {
die "Invalid n: $n\n"; # first degree of freedom
}
if (($m <= 0) || ((abs($m) - (abs(int($m)))) != 0)) {
die "Invalid m: $m\n"; # second degree of freedom
}
if (($p <= 0) || ($p > 1)) {
die "Invalid p: $p\n";
}
return precision_string(_subf($n, $m, $p));
}
sub expdistr { # Percentage points Exp(x,lambda)
# expdistr(p,lambda)
# Returns the right sided quantile associated with the exponential distribution
# with parameter lambda. That is, it returns the value of X so
# that the area to the RIGHT of X with parameter lambda is equal
# to p.
my ($p, $lambda) = @_;
if ($lambda <= 0) {
die "Invalid parameter lambda: $lambda\n"; # must be a positive number
}
if (($p <= 0) || ($p > 1)) {
die "Invalid p: $p\n";
}
return precision_string(-log($p) / $lambda);
}
sub uprob { # Upper probability N(0,1^2)
# uprob(z)
# This is the probability that a standard normal is greater than z.
# It is one minus the cumulative distribution for a standard normal.
my ($x) = @_;
return precision_string(_subuprob($x));
}
sub chisqrprob { # Upper probability X^2(x^2,n)
# chisqrprob(N,x)
# This is the probability that a chi-squared distribution with N
# degrees of freedom is bigger than x. It is one minus the cumulative
# distribution of the chi-squared dist. w/ df=N.
my ($n, $x) = @_;
if (($n <= 0) || ((abs($n) - (abs(int($n)))) != 0)) {
die "Invalid n: $n\n"; # degree of freedom
}
return precision_string(_subchisqrprob($n, $x));
}
sub tprob { # Upper probability t(x,n)
# tprob(N,t)
# This is the probability that a t distribution with N degrees of
# freedom is bigger than t. It is one minus the cumulative
# distribution of the t distribution w/ df=N.
my ($n, $x) = @_;
if (($n <= 0) || ((abs($n) - abs(int($n))) != 0)) {
die "Invalid n: $n\n"; # degree of freedom
}
return precision_string(_subtprob($n, $x));
}
sub fprob { # Upper probability F(x,n1,n2)
# fprob(n,m,f)
# This is the probability that an F distribution with n and m
# degrees of freedom is bigger than f. It is one minus the
# cumulative distribution of the F distribution w/ df1=n and df2=m.
my ($n, $m, $x) = @_;
if (($n <= 0) || ((abs($n) - (abs(int($n)))) != 0)) {
die "Invalid n: $n\n"; # first degree of freedom
}
if (($m <= 0) || ((abs($m) - (abs(int($m)))) != 0)) {
die "Invalid m: $m\n"; # second degree of freedom
}
return precision_string(_subfprob($n, $m, $x));
}
sub expprob { # Upper probability Exp(x,lambda)
# expprob(x,lambda)
# This is the probability that an exponential distribution with
# parameter lambda is bigger than x. It is one minus the
# cumulative distribution of the exponential distribution with
# parameter lambda
my ($x, $lambda) = @_;
if ($lambda <= 0) {
die "Invalid parameter lambda: $lambda\n"; # must be a positive number
}
if ($x <= 0) {
die "Invalid x: $x\n";
}
return precision_string(exp(-$x * $lambda));
}
sub _subfprob {
my ($n, $m, $x) = @_;
my $p;
if ($x <= 0) {
$p = 1;
} elsif ($m % 2 == 0) {
my $z = $m / ($m + $n * $x);
my $a = 1;
for (my $i = $m - 2; $i >= 2; $i -= 2) {
$a = 1 + ($n + $i - 2) / $i * $z * $a;
}
$p = 1 - ((1 - $z)**($n / 2) * $a);
} elsif ($n % 2 == 0) {
my $z = $n * $x / ($m + $n * $x);
my $a = 1;
for (my $i = $n - 2; $i >= 2; $i -= 2) {
$a = 1 + ($m + $i - 2) / $i * $z * $a;
}
$p = (1 - $z)**($m / 2) * $a;
} else {
my $y = atan2(sqrt($n * $x / $m), 1);
my $z = sin($y)**2;
my $a = ($n == 1) ? 0 : 1;
for (my $i = $n - 2; $i >= 3; $i -= 2) {
$a = 1 + ($m + $i - 2) / $i * $z * $a;
}
my $b = PI;
for (my $i = 2; $i <= $m - 1; $i += 2) {
$b *= ($i - 1) / $i;
}
my $p1 = 2 / $b * sin($y) * cos($y)**$m * $a;
$z = cos($y)**2;
$a = ($m == 1) ? 0 : 1;
for (my $i = $m - 2; $i >= 3; $i -= 2) {
$a = 1 + ($i - 1) / $i * $z * $a;
}
$p = max(0, $p1 + 1 - 2 * $y / PI - 2 / PI * sin($y) * cos($y) * $a);
}
return $p;
}
sub _subchisqrprob {
my ($n, $x) = @_;
my $p;
if ($x <= 0) {
$p = 1;
} elsif ($n > 100) {
$p = _subuprob((($x / $n)**(1 / 3) - (1 - 2 / 9 / $n)) / sqrt(2 / 9 / $n));
} elsif ($x > 400) {
$p = 0;
} else {
my ($a, $i, $i1);
if (($n % 2) != 0) {
$p = 2 * _subuprob(sqrt($x));
$a = sqrt(2 / PI) * exp(-$x / 2) / sqrt($x);
$i1 = 1;
} else {
$p = $a = exp(-$x / 2);
$i1 = 2;
}
for ($i = $i1; $i <= ($n - 2); $i += 2) {
$a *= $x / $i;
$p += $a;
}
}
return $p;
}
sub _subu {
my ($p) = @_;
my $y = -log(4 * $p * (1 - $p));
my $x = sqrt(
$y * (
1.570796288 + $y * (
.03706987906 + $y * (
-.8364353589E-3 + $y * (
-.2250947176E-3 + $y * (
.6841218299E-5 + $y * (
0.5824238515E-5 + $y * (
-.104527497E-5 + $y * (
.8360937017E-7 +
$y * (-.3231081277E-8 + $y * (.3657763036E-10 + $y * .6936233982E-12))
)
)
)
)
)
)
)
)
);
$x = -$x if ($p > .5);
return $x;
}
sub _subuprob {
my ($x) = @_;
my $p = 0; # if ($absx > 100)
my $absx = abs($x);
if ($absx < 1.9) {
$p = (
1 + $absx * (
.049867347 + $absx * (
.0211410061 +
$absx * (.0032776263 + $absx * (.0000380036 + $absx * (.0000488906 + $absx * .000005383)))
)
)
)**-16 / 2;
} elsif ($absx <= 100) {
for (my $i = 18; $i >= 1; $i--) {
$p = $i / ($absx + $p);
}
$p = exp(-.5 * $absx * $absx) / sqrt(2 * PI) / ($absx + $p);
}
$p = 1 - $p if ($x < 0);
return $p;
}
sub _subt {
my ($n, $p) = @_;
if ($p >= 1 || $p <= 0) {
die "Invalid p: $p\n";
}
if ($p == 0.5) {
return 0;
} elsif ($p < 0.5) {
return -_subt($n, 1 - $p);
}
my $u = _subu($p);
my $u2 = $u**2;
my $a = ($u2 + 1) / 4;
my $b = ((5 * $u2 + 16) * $u2 + 3) / 96;
my $c = (((3 * $u2 + 19) * $u2 + 17) * $u2 - 15) / 384;
my $d = ((((79 * $u2 + 776) * $u2 + 1482) * $u2 - 1920) * $u2 - 945) / 92160;
my $e = (((((27 * $u2 + 339) * $u2 + 930) * $u2 - 1782) * $u2 - 765) * $u2 + 17955) / 368640;
my $x = $u * (1 + ($a + ($b + ($c + ($d + $e / $n) / $n) / $n) / $n) / $n);
if ($n <= log10($p)**2 + 3) {
my $round;
do {
my $p1 = _subtprob($n, $x);
my $n1 = $n + 1;
my $delta = ($p1 - $p) /
exp(($n1 * log($n1 / ($n + $x * $x)) + log($n / $n1 / 2 / PI) - 1 + (1 / $n1 - 1 / $n) / 6) / 2);
$x += $delta;
$round = sprintf("%." . abs(int(log10(abs $x) - 4)) . "f", $delta);
} while (($x) && ($round != 0));
}
return $x;
}
sub _subtprob {
my ($n, $x) = @_;
my ($a, $b);
my $w = atan2($x / sqrt($n), 1);
my $z = cos($w)**2;
my $y = 1;
for (my $i = $n - 2; $i >= 2; $i -= 2) {
$y = 1 + ($i - 1) / $i * $z * $y;
}
if ($n % 2 == 0) {
$a = sin($w) / 2;
$b = .5;
} else {
$a = ($n == 1) ? 0 : sin($w) * cos($w) / PI;
$b = .5 + $w / PI;
}
return max(0, 1 - $b - $a * $y);
}
sub _subf {
my ($n, $m, $p) = @_;
my $x;
if ($p >= 1 || $p <= 0) {
die "Invalid p: $p\n";
}
if ($p == 1) {
$x = 0;
} elsif ($m == 1) {
$x = 1 / (_subt($n, 0.5 - $p / 2)**2);
} elsif ($n == 1) {
$x = _subt($m, $p / 2)**2;
} elsif ($m == 2) {
my $u = _subchisqr($m, 1 - $p);
my $a = $m - 2;
$x = 1 / (
$u / $m * (
1 + (
($u - $a) / 2 + (
((4 * $u - 11 * $a) * $u + $a * (7 * $m - 10)) / 24 +
(((2 * $u - 10 * $a) * $u + $a * (17 * $m - 26)) * $u - $a * $a * (9 * $m - 6)) / 48 / $n
) / $n
) / $n
)
);
} elsif ($n > $m) {
$x = 1 / _subf2($m, $n, 1 - $p);
} else {
$x = _subf2($n, $m, $p);
}
return $x;
}
sub _subf2 {
my ($n, $m, $p) = @_;
my $u = _subchisqr($n, $p);
my $n2 = $n - 2;
my $x = $u / $n * (
1 + (
($u - $n2) / 2 + (
((4 * $u - 11 * $n2) * $u + $n2 * (7 * $n - 10)) / 24 +
(((2 * $u - 10 * $n2) * $u + $n2 * (17 * $n - 26)) * $u - $n2 * $n2 * (9 * $n - 6)) / 48 / $m
) / $m
) / $m
);
my $delta;
do {
my $z = exp(
(
($n + $m) * log(($n + $m) / ($n * $x + $m)) +
($n - 2) * log($x) +
log($n * $m / ($n + $m)) -
log(4 * PI) -
(1 / $n + 1 / $m - 1 / ($n + $m)) / 6
) / 2
);
$delta = (_subfprob($n, $m, $x) - $p) / $z;
$x += $delta;
} while (abs($delta) > 3e-4);
return $x;
}
sub _subchisqr {
my ($n, $p) = @_;
my $x;
if (($p > 1) || ($p <= 0)) {
die "Invalid p: $p\n";
} elsif ($p == 1) {
$x = 0;
} elsif ($n == 1) {
$x = _subu($p / 2)**2;
} elsif ($n == 2) {
$x = -2 * log($p);
} else {
my $u = _subu($p);
my $u2 = $u * $u;
$x = max(0,
$n +
sqrt(2 * $n) * $u +
2 / 3 * ($u2 - 1) +
$u * ($u2 - 7) / 9 / sqrt(2 * $n) -
2 / 405 / $n * ($u2 * (3 * $u2 + 7) - 16));
if ($n <= 100) {
my ($x0, $p1, $z);
do {
$x0 = $x;
if ($x < 0) {
$p1 = 1;
} elsif ($n > 100) {
$p1 = _subuprob((($x / $n)**(1 / 3) - (1 - 2 / 9 / $n)) / sqrt(2 / 9 / $n));
} elsif ($x > 400) {
$p1 = 0;
} else {
my ($i0, $a);
if (($n % 2) != 0) {
$p1 = 2 * _subuprob(sqrt($x));
$a = sqrt(2 / PI) * exp(-$x / 2) / sqrt($x);
$i0 = 1;
} else {
$p1 = $a = exp(-$x / 2);
$i0 = 2;
}
for (my $i = $i0; $i <= $n - 2; $i += 2) {
$a *= $x / $i;
$p1 += $a;
}
}
$z = exp((($n - 1) * log($x / $n) - log(4 * PI * $x) + $n - $x - 1 / $n / 6) / 2);
$x += ($p1 - $p) / $z;
$x = sprintf("%.5f", $x);
} while (($n < 31) && (abs($x0 - $x) > 1e-4));
}
}
return $x;
}
sub log10 {
my $n = shift;
return log($n) / log(10);
}
sub max {
my $max = shift;
my $next;
while (@_) {
$next = shift;
$max = $next if ($next > $max);
}
return $max;
}
sub min {
my $min = shift;
my $next;
while (@_) {
$next = shift;
$min = $next if ($next < $min);
}
return $min;
}
sub precision {
my ($x) = @_;
return abs int(log10(abs $x) - SIGNIFICANT);
}
sub precision_string {
my ($x) = @_;
if ($x) {
return sprintf "%." . precision($x) . "f", $x;
} else {
return "0";
}
}
# Autoload methods go after =cut, and are processed by the autosplit program.
1;
__END__
# Below is the stub of documentation for your module.
=head1 NAME
Statistics::Distributions - Perl module for calculating probabilities and critical values of common statistical distributions
=head1 SYNOPSIS
use Statistics::Distributions;
$uprob=uprob(-0.85);
print "upper probability of the u distribution: Q(u) = 1-G(u) (u=1.43) = $uprob";
$tprob=tprob(3, 6.251);
print "upper probability of the t distribution: Q = 1-G (3 degrees of freedom , t = 6.251) = $tprob";
$chisprob=chisqrprob(3, 6.25);
print "upper probability of the chi-square distribution: Q = 1-G (3 degrees of freedom, chi-squared = 6.25) = $chisprob";
$fprob=fprob(3,5, .625);
print "upper probability of the F distribution: Q = 1-G (3 degrees of freedom in numerator, 5 degrees of freedom in denominator, F $
$u=udistr(.05);
print "u-crit (95th percentile = 0.05 level) = $u";
$t=tdistr(1, .005);
print "t-crit (1 degree of freedom, 99.5th percentile = 0.005 level) =$t";
$chis=chisqrdistr(2, .05);
print "Chi-squared-crit (2 degrees of freedom, 95th percentile = 0.05 level) = $chis";
$f=fdistr(1,3, .01);
print "F-crit (1 degree of freedom in numerator, 3 degrees of freedom in denominator, 99th percentile = 0.01 level) = $f";
=head1 DESCRIPTION
This Perl module calulates percentage points (6 significant digits) of the u (standard normal) distribution,
the student's t distribution, the chi-square distribution and the F distribution.
It can also calculate the upper probability (6 significant digits) of the u (standard normal),
the chi-square, the t and the F distribution.
These critical values are needed to perform statistical tests, like the u test, the t test, the chi-squared test,
and the F test, and to calculate confidence intervals.
If you are interested in more precise algorithms you could look at:
StatLib: http://lib.stat.cmu.edu/apstat/
Applied Statistics Algorithms by Griffiths, P. and Hill, I.D., Ellis Horwood: Chichester (1985)
=head1 AUTHOR
Michael Kospach, [email protected]
Nice formating, simplification and bug repair by Matthias Trautner Kromann, [email protected]
=cut