forked from openwebwork/pg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRegression.pm
490 lines (347 loc) · 12.8 KB
/
Regression.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
package Regression;
$VERSION = 0.1;
use strict;
################################################################
use constant TINY => 1e-8;
use constant DEBUGGING => 0;
################################################################
=pod
=head1 NAME
Regression.pm - weighted linear regression package (line+plane fitting)
=head1 DESCRIPTION
Regression.pm is a multivariate linear regression package. That is,
it estimates the c coefficients for a line-fit of the type
y= b(0)*x(0) + b(1)*x1 + b(2)*x2 + ... + b(k)*xk
given a data set of N observations, each with k independent x variables and
one y variable. Naturally, N must be greater than k---and preferably
considerably greater. Any reasonable undergraduate statistics book will
explain what a regression is. Most of the time, the user will provide a
constant ('1') as x(0) for each observation in order to allow the regression
package to fit an intercept.
=head1 USAGE
If the sample data for (x1, x2, y) includes ($x1[$i], $x2[$i], $y[$i]) for 0<=$i<=5, type
$reg = Regression->new( 3, "y", [ "const", "x1", "x2" ] );
for($i=0; $i<6; $i++){
$reg->include( $y[$i], [ 1.0, $x1[$i], $x2[$i] ] );
}
@coeff= $reg->theta();
$b0 = $coeff[0][0];
$b1 = $coeff[0][1];
$b2 = $coeff[0][2];
=head1 ALGORITHM
=head2 Original Algorithm (ALGOL-60):
W. M. Gentleman, University of Waterloo, "Basic Description
For Large, Sparse Or Weighted Linear Least Squares Problems
(Algorithm AS 75)," Applied Statistics (1974) Vol 23; No. 3
=head2 INTERNALS
R=Rbar is an upperright triangular matrix, kept in normalized
form with implicit 1's on the diagonal. D is a diagonal scaling
matrix. These correspond to "standard Regression usage" as
X' X = R' D R
A backsubsitution routine (in thetacov) allows to invert the R
matrix (the inverse is upper-right triangular, too!). Call this
matrix H, that is H=R^(-1).
(X' X)^(-1) = [(R' D^(1/2)') (D^(1/2) R)]^(-1)
= [ R^-1 D^(-1/2) ] [ R^-1 D^(-1/2) ]'
=head2 Remarks
This algorithm is the statistical "standard." Insertion of a new
observation can be done one obs at any time (WITH A WEIGHT!),
and still only takes a low quadratic time. The storage space
requirement is of quadratic order (in the indep variables). A
practically infinite number of observations can easily be
processed!
=head1 AUTHOR
Naturally, Gentleman invented this algorithm. Adaptation by ivo
welch. Alan Miller ([email protected]) pointed out
nicer ways to compute the R^2.
=head1 Subroutines
=cut
################################################################
#### let's start with handling of missing data ("nan" or "NaN")
my $nan = "NaN";
sub isNaN {
if ($_[0] !~ /[0-9nan]/) { die "definitely not a number in NaN: '$_[0]'"; }
return ($_[0] =~ /NaN/i) || ($_[0] != $_[0]);
}
################################################################
=pod
=head2 new
receives the number of variables on each observations (i.e., an integer) and
returns the blessed data structure. Also takes an optional name for this
regression to remember, as well as a reference to a k*1 array of names for
the X coefficients.
=cut
################################################################
sub new {
my $classname = shift(@_);
my $K = shift(@_); # the number of variables
my $regname = shift(@_) || "with no name";
if (!defined($K)) { die "Regression->new needs at least one argument for the number of variables"; }
if ($K <= 1) { die "Cannot run a regression without at least two variables."; }
sub zerovec {
my @rv;
for (my $i = 0; $i <= $_[0]; ++$i) { $rv[$i] = 0; }
return \@rv;
}
bless {
k => $K,
regname => $regname,
xnames => shift(@_),
# constantly updated
n => 0,
sse => 0,
syy => 0,
sy => 0,
wghtn => 0,
d => zerovec($K),
thetabar => zerovec($K),
rbarsize => ($K + 1) * $K / 2 + 1,
rbar => zerovec(($K + 1) * $K / 2 + 1),
# other constants
neverabort => 0,
# computed on demand
theta => undef,
sigmasq => undef,
rsq => undef,
adjrsq => undef
}, $classname;
}
################################################################
=pod
=head2 dump
is used for debugging.
=cut
################################################################
sub dump {
my $this = $_[0];
print "****************************************************************\n";
print "Regression '$this->{regname}'\n";
print "****************************************************************\n";
sub print1val {
no strict;
print "$_[1]($_[2])=\t" . ((defined($_[0]->{ $_[2] }) ? $_[0]->{ $_[2] } : "intentionally undef"));
my $ref = $_[0]->{ $_[2] };
if (ref($ref) eq 'ARRAY') {
my $arrayref = $ref;
print " $#$arrayref+1 elements:\n";
if ($#$arrayref > 30) {
print "\t";
for (my $i = 0; $i < $#$arrayref + 1; ++$i) { print "$i='$arrayref->[$i]';"; }
print "\n";
} else {
for (my $i = 0; $i < $#$arrayref + 1; ++$i) { print "\t$i=\t'$arrayref->[$i]'\n"; }
}
} elsif (ref($ref) eq 'HASH') {
my $hashref = $ref;
print " " . scalar(keys(%$hashref)) . " elements\n";
while (my ($key, $val) = each(%$hashref)) {
print "\t'$key'=>'$val';\n";
}
} else {
print " [was scalar]\n";
}
}
while (my ($key, $val) = each(%$this)) {
$this->print1val($key, $key);
}
print "****************************************************************\n";
}
################################################################
=pod
=head2 print
prints the estimated coefficients, and R^2 and N.
=cut
################################################################
sub print {
my $this = $_[0];
print "****************************************************************\n";
print "Regression '$this->{regname}'\n";
print "****************************************************************\n";
my $theta = $this->theta();
for (my $i = 0; $i < $this->k(); ++$i) {
print "Theta[$i"
. (defined($this->{xnames}->[$i]) ? "='$this->{xnames}->[$i]'" : "") . "]= "
. sprintf("%12.4f", $theta->[$i]) . "\n";
}
print "R^2= " . sprintf("%.3f", $this->rsq()) . ", N= " . $this->n() . "\n";
print "****************************************************************\n";
}
################################################################
=pod
=head2 include
receives one new observation. Call is
$blessedregr->include( $yvariable, [ $x1, $x2, $x3 ... $xk ], 1.0 );
where 1.0 is an (optional) weight. Note that inclusion with a
weight of -1 can be used to delete an observation.
The function returns the number of observations so far included.
=cut
################################################################
sub include {
my $this = shift();
my $yelement = shift();
my $xrow = shift();
my $weight = shift() || 1.0;
# omit observations with missing observations;
if (!defined($yelement)) { die "Internal Error: yelement is undef"; }
if (isNaN($yelement)) { return $this->{n}; }
my @xcopy;
for (my $i = 1; $i <= $this->{k}; ++$i) {
if (!defined($xrow->[ $i - 1 ])) { die "Internal Error: xrow [ $i-1 ] is undef"; }
if (isNaN($xrow->[ $i - 1 ])) { return $this->{n}; }
$xcopy[$i] = $xrow->[ $i - 1 ];
}
$this->{syy} += ($weight * ($yelement * $yelement));
$this->{sy} += ($weight * ($yelement));
if ($weight >= 0.0) { ++$this->{n}; }
else { --$this->{n}; }
$this->{wghtn} += $weight;
for (my $i = 1; $i <= $this->{k}; ++$i) {
if ($weight == 0.0) { return $this->{n}; }
if (abs($xcopy[$i]) > (TINY)) {
my $xi = $xcopy[$i];
my $di = $this->{d}->[$i];
my $dprimei = $di + $weight * ($xi * $xi);
my $cbar = $di / $dprimei;
my $sbar = $weight * $xi / $dprimei;
$weight *= ($cbar);
$this->{d}->[$i] = $dprimei;
my $nextr = int((($i - 1) * ((2.0 * $this->{k} - $i)) / 2.0 + 1));
if (!($nextr <= $this->{rbarsize})) { die "Internal Error 2"; }
my $xk;
for (my $kc = $i + 1; $kc <= $this->{k}; ++$kc) {
$xk = $xcopy[$kc];
$xcopy[$kc] = $xk - $xi * $this->{rbar}->[$nextr];
$this->{rbar}->[$nextr] = $cbar * $this->{rbar}->[$nextr] + $sbar * $xk;
++$nextr;
}
$xk = $yelement;
$yelement -= $xi * $this->{thetabar}->[$i];
$this->{thetabar}->[$i] = $cbar * $this->{thetabar}->[$i] + $sbar * $xk;
}
}
$this->{sse} += $weight * ($yelement * $yelement);
# indicate that Theta is garbage now
$this->{theta} = undef;
$this->{sigmasq} = undef;
$this->{rsq} = undef;
$this->{adjrsq} = undef;
return $this->{n};
}
################################################################
=pod
=head2 theta
estimates and returns the vector of coefficients.
=cut
################################################################
sub theta {
my $this = shift();
if (defined($this->{theta})) { return $this->{theta}; }
if ($this->{n} < $this->{k}) { return undef; }
for (my $i = ($this->{k}); $i >= 1; --$i) {
$this->{theta}->[$i] = $this->{thetabar}->[$i];
my $nextr = int(($i - 1) * ((2.0 * $this->{k} - $i)) / 2.0 + 1);
if (!($nextr <= $this->{rbarsize})) { die "Internal Error 3"; }
for (my $kc = $i + 1; $kc <= $this->{k}; ++$kc) {
$this->{theta}->[$i] -= ($this->{rbar}->[$nextr] * $this->{theta}->[$kc]);
++$nextr;
}
}
my $ref = $this->{theta};
shift(@$ref); # we are counting from 0
# if in a scalar context, otherwise please return the array directly
return $this->{theta};
}
################################################################
=pod
=head2 rsq, adjrsq, sigmasq, ybar, sst, k, n
These functions provide common auxiliary information. rsq, adjrsq,
sigmasq, sst, and ybar have not been checked but are likely correct.
The results are stored for later usage, although this is somewhat
unnecessary because the computation is so simple anyway.
=cut
################################################################
sub rsq {
my $this = shift();
return $this->{rsq} = 1.0 - $this->{sse} / $this->sst();
}
sub adjrsq {
my $this = shift();
return $this->{adjrsq} = 1.0 - (1.0 - $this->rsq()) * ($this->{n} - 1) / ($this->{n} - $this->{k});
}
sub sigmasq {
my $this = shift();
return $this->{sigmasq} = ($this->{n} <= $this->{k}) ? "Inf" : ($this->{sse} / ($this->{n} - $this->{k}));
}
sub ybar {
my $this = shift();
return $this->{ybar} = $this->{sy} / $this->{wghtn};
}
sub sst {
my $this = shift();
return $this->{sst} = ($this->{syy} - $this->{wghtn} * ($this->ybar())**2);
}
sub k {
my $this = shift();
return $this->{k};
}
sub n {
my $this = shift();
return $this->{n};
}
################################################################
=pod
=head1 DEBUGGING = SAMPLE USAGE CODE
The sample code included with this package demonstrates regression usage.
To execute it, just set the constant DEBUGGING at the script head to 1, and
do
perl Regression.pm
The printout should be
****************************************************************
Regression 'sample regression'
****************************************************************
Theta[0='const']= 0.2950
Theta[1='someX']= 0.6723
Theta[2='someY']= 1.0688
R^2= 0.808, N= 4
****************************************************************
=cut
################################################################
if (DEBUGGING) {
package main;
my $reg = Statistics::Regression->new(3, "sample regression", [ "const", "someX", "someY" ]);
$reg->include(2.0, [ 1.0, 3.0, -1.0 ]);
$reg->include(1.0, [ 1.0, 5.0, 2.0 ]);
$reg->include(20.0, [ 1.0, 31.0, 0.0 ]);
$reg->include(15.0, [ 1.0, 11.0, 2.0 ]);
# $reg->print(); or: my $coefs= $reg->theta(); print @coefs; print $reg->rsq;
# my $coefs= $reg->theta(); print $coeff[0];
}
################################################################
=pod
=head1 BUGS/PROBLEMS
=over 4
=item Missing
This package lacks routines to compute the standard errors of
the coefficients. This requires access to a matrix inversion
package, and I do not have one at my disposal. If you want to
add one, please let me know.
=item Perl Problem
perl is unaware of IEEE number representations. This makes it a
pain to test whether an observation contains any missing
variables (coded as 'NaN' in Regression.pm).
=item Others
I am a novice perl programmer, so this is probably ugly code. However, it
does seem to work, and I could not find anything equivalent on cpan.
=back
=head1 INSTALLATION and DOCUMENTATION
Installation consists of moving the file 'Regression.pm' into a subdirectory
Statistics of your modules path (e.g., /usr/lib/perl5/site_perl/5.6.0/).
The documentation was produced from the module:
pod2html -noindex -title "perl weighted least squares regression package" Regression.pm > Regression.html
The documentation was slightly modified by Maria Voloshina, University of Rochester.
=head1 LICENSE
This module is released for free public use under a GPL license.
(C) Ivo Welch, 2001.
=cut
################################################################
1;