diff --git a/pybamm/spatial_methods/spectral_volume.py b/pybamm/spatial_methods/spectral_volume.py index f6d4dcd817..53e6a6fce7 100644 --- a/pybamm/spatial_methods/spectral_volume.py +++ b/pybamm/spatial_methods/spectral_volume.py @@ -288,7 +288,7 @@ def gradient(self, symbol, discretised_symbol, boundary_conditions): # Multiply by gradient matrix out = (gradient_matrix @ reconstructed_symbol - + penalty_matrix @ discretised_symbol) + + penalty_matrix @ discretised_symbol) # Add Neumann boundary conditions, if defined if symbol.id in boundary_conditions: @@ -362,7 +362,7 @@ def gradient_matrix(self, domain, auxiliary_domains): for i in range(1, n - 1): sub_matrix[i * d, i * (d + 1):(i + 1) * (d + 1)] = ( f * sub_matrix_raw[i * (d + 1), - i * (d + 1):(i + 1) * (d + 1)] + i * (d + 1):(i + 1) * (d + 1)] ) sub_matrix[i * d + 1:(i + 1) * d, i * (d + 1):(i + 1) * (d + 1)] = ( @@ -371,7 +371,7 @@ def gradient_matrix(self, domain, auxiliary_domains): ) sub_matrix[(i + 1) * d, i * (d + 1):(i + 1) * (d + 1)] = ( f * sub_matrix_raw[i * (d + 1) + d, - i * (d + 1):(i + 1) * (d + 1)] + i * (d + 1):(i + 1) * (d + 1)] ) sub_matrix[-d - 1, -d - 1:] = f * sub_matrix_raw[-d - 1, -d - 1:] sub_matrix[-d:, -d - 1:] = sub_matrix_raw[-d:, -d - 1:] @@ -416,7 +416,7 @@ def penalty_matrix(self, domain, auxiliary_domains): n = submesh.npts d = self.order e = np.zeros(n - 1) - e[d-1::d] = 1 / submesh.d_nodes[d-1::d] + e[d - 1::d] = 1 / submesh.d_nodes[d - 1::d] sub_matrix = vstack([ np.zeros(n), diags([-e, e], [0, 1], shape=(n - 1, n)),