forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xcit.py
283 lines (212 loc) · 8.34 KB
/
xcit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from random import randrange
import torch
from torch import nn, einsum
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def l2norm(t):
return F.normalize(t, dim = -1, p = 2)
def dropout_layers(layers, dropout):
if dropout == 0:
return layers
num_layers = len(layers)
to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout
# make sure at least one layer makes it
if all(to_drop):
rand_index = randrange(num_layers)
to_drop[rand_index] = False
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
return layers
# classes
class LayerScale(Module):
def __init__(self, dim, fn, depth):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif 18 > depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
self.fn = fn
self.scale = nn.Parameter(torch.full((dim,), init_eps))
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class FeedForward(Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context = None):
h = self.heads
x = self.norm(x)
context = x if not exists(context) else torch.cat((x, context), dim = 1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class XCAttention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
h = self.heads
x, ps = pack_one(x, 'b * d')
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h d n', h = h), (q, k, v))
q, k = map(l2norm, (q, k))
sim = einsum('b h i n, b h j n -> b h i j', q, k) * self.temperature.exp()
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j n -> b h i n', attn, v)
out = rearrange(out, 'b h d n -> b n (h d)')
out = unpack_one(out, ps, 'b * d')
return self.to_out(out)
class LocalPatchInteraction(Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
assert (kernel_size % 2) == 1
padding = kernel_size // 2
self.net = nn.Sequential(
nn.LayerNorm(dim),
Rearrange('b h w c -> b c h w'),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
nn.BatchNorm2d(dim),
nn.GELU(),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
Rearrange('b c h w -> b h w c'),
)
def forward(self, x):
return self.net(x)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x, context = None):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for attn, ff in layers:
x = attn(x, context = context) + x
x = ff(x) + x
return x
class XCATransformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size = 3, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, XCAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, LocalPatchInteraction(dim, local_patch_kernel_size), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for cross_covariance_attn, local_patch_interaction, ff in layers:
x = cross_covariance_attn(x) + x
x = local_patch_interaction(x) + x
x = ff(x) + x
return x
class XCiT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
cls_depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
local_patch_kernel_size = 3,
layer_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(dim))
self.dropout = nn.Dropout(emb_dropout)
self.xcit_transformer = XCATransformer(dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size, dropout, layer_dropout)
self.final_norm = nn.LayerNorm(dim)
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
x, ps = pack_one(x, 'b * d')
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = unpack_one(x, ps, 'b * d')
x = self.dropout(x)
x = self.xcit_transformer(x)
x = self.final_norm(x)
cls_tokens = repeat(self.cls_token, 'd -> b 1 d', b = b)
x = rearrange(x, 'b ... d -> b (...) d')
cls_tokens = self.cls_transformer(cls_tokens, context = x)
return self.mlp_head(cls_tokens[:, 0])