Skip to content

Latest commit

 

History

History
497 lines (455 loc) · 37.5 KB

README.md

File metadata and controls

497 lines (455 loc) · 37.5 KB

YOLOv8_plus_det

目录

1. 简介

YOLOv8_plus​_det例程可以运行YOLOv8_det系列模型,以及具有相同输入输出结构的衍生版本,目前已适配​YOLOv8官方开源仓库​YOLOv9官方开源仓库<200b>YOLOv12官方开源仓库,支持在SOPHON BM1684X/BM1688/CV186X上进行推理测试。

2. 特性

2.1 目录结构说明

├── cpp                   # 存放C++例程及其README
|   ├──README.md      
|   ├──yolov8_bmcv        # C++例程
├── docs                  # 存放本例程专用文档,如ONNX导出、移植常见问题等
├── pics                  # 存放README等说明文档中用到的图片
├── python                # 存放Python例程及其README
|   ├──README.md 
|   ├──yolov8_bmcv.py     # Python例程
|   └──...                # Python例程共用功能的封装。
├── README.md             # 本例程的中文指南
├── scripts               # 存放模型编译、数据下载、自动测试等shell脚本
└── tools                 # 存放精度测试、性能比对等python脚本

2.2 SDK特性

  • 支持BM1688/CV186X(SoC)和BM1684X(x86 PCIe、SoC、riscv PCIe)
  • 支持FP32、FP16(BM1684X/BM1688/CV186X)、INT8模型编译和推理
  • 支持C++、Python推理
  • 支持图片和视频测试

3. 数据准备与模型编译

3.1 数据准备

​本例程在scripts目录下提供了相关模型和数据的下载脚本download.sh如果您希望自己准备模型和数据集,可以跳过本小节,参考3.2 模型编译进行模型转换。

chmod -R +x scripts/
./scripts/download.sh --all 

download.sh默认只下载datasetsmodels可以通过指定参数分平台下载,参数如下:

--all     # 下载所有模型
--BM1684X # 下载BM1684X的bmodel
--BM1688  # 下载BM1688的bmodel
--CV186X  # 下载CV186X的bmodel
--onnx    # 下载onnx

下载的模型包括:

models/
├── BM1684X # 在BM1684X上运行的模型
│   ├── yolov12s_fp16_1b.bmodel
│   ├── yolov12s_fp32_1b.bmodel
│   ├── yolov12s_int8_1b.bmodel
│   ├── yolov12s_int8_4b.bmodel
│   ├── yolov11s_fp16_1b.bmodel
│   ├── yolov11s_fp32_1b.bmodel
│   ├── yolov11s_int8_1b.bmodel
│   ├── yolov11s_int8_4b.bmodel
│   ├── yolov8s_fp16_1b.bmodel
│   ├── yolov8s_fp32_1b.bmodel
│   ├── yolov8s_int8_1b.bmodel
│   ├── yolov8s_int8_4b.bmodel
│   ├── yolov9s_fp16_1b.bmodel
│   ├── yolov9s_fp32_1b.bmodel
│   ├── yolov9s_int8_1b.bmodel
│   └── yolov9s_int8_4b.bmodel
├── BM1688 # 在BM1688上运行的模型
│   ├── yolov12s_fp16_1b.bmodel
│   ├── yolov12s_fp32_1b.bmodel
│   ├── yolov12s_int8_1b.bmodel
│   ├── yolov12s_int8_4b_2core.bmodel
│   ├── yolov12s_int8_4b.bmodel
│   ├── yolov11s_fp16_1b.bmodel
│   ├── yolov11s_fp32_1b.bmodel
│   ├── yolov11s_int8_1b.bmodel
│   ├── yolov11s_int8_4b_2core.bmodel
│   ├── yolov11s_int8_4b.bmodel
│   ├── yolov8s_fp16_1b.bmodel
│   ├── yolov8s_fp32_1b.bmodel
│   ├── yolov8s_int8_1b.bmodel
│   ├── yolov8s_int8_4b_2core.bmodel
│   ├── yolov8s_int8_4b.bmodel
│   ├── yolov9s_fp16_1b.bmodel
│   ├── yolov9s_fp32_1b.bmodel
│   ├── yolov9s_int8_1b.bmodel
│   ├── yolov9s_int8_4b_2core.bmodel
│   └── yolov9s_int8_4b.bmodel
├── CV186X
│   ├── yolov12s_fp16_1b.bmodel
│   ├── yolov12s_fp32_1b.bmodel
│   ├── yolov12s_int8_1b.bmodel
│   ├── yolov12s_int8_4b.bmodel
│   ├── yolov11s_fp16_1b.bmodel
│   ├── yolov11s_fp32_1b.bmodel
│   ├── yolov11s_int8_1b.bmodel
│   ├── yolov11s_int8_4b.bmodel
│   ├── yolov8s_fp16_1b.bmodel
│   ├── yolov8s_fp32_1b.bmodel
│   ├── yolov8s_int8_1b.bmodel
│   ├── yolov8s_int8_4b.bmodel
│   ├── yolov9s_fp16_1b.bmodel
│   ├── yolov9s_fp32_1b.bmodel
│   ├── yolov9s_int8_1b.bmodel
│   └── yolov9s_int8_4b.bmodel
├── onnx
    ├── yolov12s.onnx
    ├── yolov12s_qtable # 量化yolov12s.onnx时,需要混合精度的层
    ├── yolo11s.onnx
    ├── yolov11s_qtable # 量化yolov11s.onnx时,需要混合精度的层
    ├── yolov8s.onnx
    ├── yolov8s_qtable # 量化yolov8s.onnx时,需要混合精度的层
    ├── yolov9s_qtable # 量化yolov9-s-converted.onnx时,需要混合精度的层
    └── yolov9-s-converted.onnx

下载的数据包括:

./datasets
├── test                                      # 测试图片
├── test_car_person_1080P.mp4                 # 测试视频
├── coco.names                                # coco类别名文件
├── coco128                                   # coco128数据集,用于模型量化
└── coco                                      
    ├── val2017_1000                               # coco val2017_1000数据集:coco val2017中随机抽取的1000张样本
    └── instances_val2017_1000.json                # coco val2017_1000数据集关键点标签文件,用于计算精度评价指标 

3.2 模型编译

如果您不编译模型,只想直接使用下载的数据集和模型,可以跳过本小节。

源模型需要编译成BModel才能在SOPHON TPU上运行,源模型在编译前要导出成onnx模型,如果您使用的TPU-MLIR版本>=v1.3.0(即官网v23.07.01),也可以直接使用torchscript模型。具体可参考模型导出。​同时,您需要准备用于测试的数据集,如果量化模型,还要准备用于量化的数据集。

建议使用TPU-MLIR编译BModel,模型编译前需要安装TPU-MLIR,具体可参考TPU-MLIR环境搭建。安装好后需在TPU-MLIR环境中进入例程目录,并使用本例程提供的脚本将onnx模型编译为BModel。脚本中命令的详细说明可参考《TPU-MLIR开发手册》(请从算能官网相应版本的SDK中获取)。

  • 生成FP32 BModel

​本例程在scripts目录下提供了TPU-MLIR编译FP32 BModel的脚本,请注意修改gen_fp32bmodel_mlir.sh中的onnx模型路径、生成模型目录和输入大小shapes等参数,并在执行时指定BModel运行的目标平台(支持BM1684X/BM1688/CV186X),如:

./scripts/gen_fp32bmodel_mlir.sh bm1684x #bm1688/cv186x

​执行上述命令会在models/BM1684X等文件夹下生成转换好的FP32 BModel。

  • 生成FP16 BModel

​本例程在scripts目录下提供了TPU-MLIR编译FP16 BModel的脚本,请注意修改gen_fp16bmodel_mlir.sh中的onnx模型路径、生成模型目录和输入大小shapes等参数,并在执行时指定BModel运行的目标平台(支持BM1684X/BM1688),如:

./scripts/gen_fp16bmodel_mlir.sh bm1684x #bm1688/cv186x

​执行上述命令会在models/BM1684X/等文件夹下生成转换好的FP16 BModel。

  • 生成INT8 BModel

​本例程在scripts目录下提供了量化INT8 BModel的脚本,请注意修改gen_int8bmodel_mlir.sh中的onnx模型路径、生成模型目录和输入大小shapes等参数,在执行时输入BModel的目标平台(支持BM1684X/BM1688),如:

./scripts/gen_int8bmodel_mlir.sh bm1684x #bm1688/cv186x

​上述脚本会在models/BM1684X等文件夹下生成转换好的INT8 BModel。

注:这里用到了混合精度量化,需要将一些层设为敏感层,相应的qtable在此前download.sh下载的models/onnx文件夹里。如果您需要量化自己微调过的模型,可以参考量化指南中的方法,从我们提供的qtable倒推出自己模型需要的qtable。

4. 例程测试

5. 精度测试

5.1 测试方法

首先,参考C++例程Python例程推理要测试的数据集,生成预测的json文件,注意修改数据集(datasets/coco/val2017_1000)和相关参数(conf_thresh=0.001、nms_thresh=0.7)。
然后,使用tools目录下的eval_coco.py脚本,将测试生成的json文件与测试集标签json文件进行对比,计算出目标检测的评价指标,命令如下:

# 安装pycocotools,若已安装请跳过
pip3 install pycocotools
# 请根据实际情况修改程序路径和json文件路径
python3 tools/eval_coco.py --gt_path datasets/coco/instances_val2017_1000.json --result_json results/yolov8s_fp32_1b.bmodel_val2017_1000_bmcv_python_result.json

5.2 测试结果

在coco2017 val数据集上,精度测试结果如下:

测试平台 测试程序 测试模型 AP@IoU=0.5:0.95 AP@IoU=0.5
SE7-32 yolov8_bmcv.py yolov8s_fp32_1b.bmodel 0.447 0.610
SE7-32 yolov8_bmcv.soc yolov8s_fp32_1b.bmodel 0.453 0.620
SE7-32 yolov8_bmcv.py yolov8s_fp16_1b.bmodel 0.447 0.610
SE7-32 yolov8_bmcv.soc yolov8s_fp16_1b.bmodel 0.453 0.620
SE7-32 yolov8_bmcv.py yolov8s_int8_1b.bmodel 0.442 0.607
SE7-32 yolov8_bmcv.soc yolov8s_int8_1b.bmodel 0.449 0.617
SE7-32 yolov8_bmcv.py yolov8s_int8_4b.bmodel 0.442 0.607
SE7-32 yolov8_bmcv.soc yolov8s_int8_4b.bmodel 0.449 0.617
SE7-32 yolov8_bmcv.py yolov9s_fp32_1b.bmodel 0.464 0.630
SE7-32 yolov8_bmcv.soc yolov9s_fp32_1b.bmodel 0.468 0.636
SE7-32 yolov8_bmcv.py yolov9s_fp16_1b.bmodel 0.463 0.630
SE7-32 yolov8_bmcv.soc yolov9s_fp16_1b.bmodel 0.469 0.637
SE7-32 yolov8_bmcv.py yolov9s_int8_1b.bmodel 0.455 0.624
SE7-32 yolov8_bmcv.soc yolov9s_int8_1b.bmodel 0.460 0.632
SE7-32 yolov8_bmcv.py yolov9s_int8_4b.bmodel 0.455 0.624
SE7-32 yolov8_bmcv.soc yolov9s_int8_4b.bmodel 0.460 0.632
SE7-32 yolov8_bmcv.py yolov11s_fp32_1b.bmodel 0.471 0.638
SE7-32 yolov8_bmcv.soc yolov11s_fp32_1b.bmodel 0.474 0.645
SE7-32 yolov8_bmcv.py yolov11s_fp16_1b.bmodel 0.470 0.638
SE7-32 yolov8_bmcv.soc yolov11s_fp16_1b.bmodel 0.475 0.645
SE7-32 yolov8_bmcv.py yolov11s_int8_1b.bmodel 0.462 0.628
SE7-32 yolov8_bmcv.soc yolov11s_int8_1b.bmodel 0.468 0.638
SE7-32 yolov8_bmcv.py yolov11s_int8_4b.bmodel 0.462 0.628
SE7-32 yolov8_bmcv.soc yolov11s_int8_4b.bmodel 0.468 0.638
SE7-32 yolov8_bmcv.py yolov12s_fp32_1b.bmodel 0.474 0.640
SE7-32 yolov8_bmcv.soc yolov12s_fp32_1b.bmodel 0.481 0.650
SE7-32 yolov8_bmcv.py yolov12s_fp16_1b.bmodel 0.474 0.640
SE7-32 yolov8_bmcv.soc yolov12s_fp16_1b.bmodel 0.481 0.651
SE7-32 yolov8_bmcv.py yolov12s_int8_1b.bmodel 0.468 0.633
SE7-32 yolov8_bmcv.soc yolov12s_int8_1b.bmodel 0.473 0.642
SE7-32 yolov8_bmcv.py yolov12s_int8_4b.bmodel 0.468 0.633
SE7-32 yolov8_bmcv.soc yolov12s_int8_4b.bmodel 0.473 0.642
SE9-16 yolov8_bmcv.py yolov8s_fp32_1b.bmodel 0.447 0.610
SE9-16 yolov8_bmcv.soc yolov8s_fp32_1b.bmodel 0.453 0.620
SE9-16 yolov8_bmcv.py yolov8s_fp16_1b.bmodel 0.447 0.610
SE9-16 yolov8_bmcv.soc yolov8s_fp16_1b.bmodel 0.453 0.620
SE9-16 yolov8_bmcv.py yolov8s_int8_1b.bmodel 0.442 0.607
SE9-16 yolov8_bmcv.soc yolov8s_int8_1b.bmodel 0.450 0.618
SE9-16 yolov8_bmcv.py yolov8s_int8_4b.bmodel 0.442 0.607
SE9-16 yolov8_bmcv.soc yolov8s_int8_4b.bmodel 0.450 0.618
SE9-16 yolov8_bmcv.py yolov8s_int8_4b_2core.bmodel 0.442 0.607
SE9-16 yolov8_bmcv.soc yolov8s_int8_4b_2core.bmodel 0.450 0.618
SE9-16 yolov8_bmcv.py yolov9s_fp32_1b.bmodel 0.465 0.630
SE9-16 yolov8_bmcv.soc yolov9s_fp32_1b.bmodel 0.469 0.637
SE9-16 yolov8_bmcv.py yolov9s_fp16_1b.bmodel 0.463 0.630
SE9-16 yolov8_bmcv.soc yolov9s_fp16_1b.bmodel 0.469 0.637
SE9-16 yolov8_bmcv.py yolov9s_int8_1b.bmodel 0.454 0.623
SE9-16 yolov8_bmcv.soc yolov9s_int8_1b.bmodel 0.459 0.631
SE9-16 yolov8_bmcv.py yolov9s_int8_4b.bmodel 0.454 0.623
SE9-16 yolov8_bmcv.soc yolov9s_int8_4b.bmodel 0.459 0.631
SE9-16 yolov8_bmcv.py yolov9s_int8_4b_2core.bmodel 0.454 0.623
SE9-16 yolov8_bmcv.soc yolov9s_int8_4b_2core.bmodel 0.459 0.631
SE9-16 yolov8_bmcv.py yolov11s_fp32_1b.bmodel 0.471 0.638
SE9-16 yolov8_bmcv.soc yolov11s_fp32_1b.bmodel 0.476 0.645
SE9-16 yolov8_bmcv.py yolov11s_fp16_1b.bmodel 0.471 0.638
SE9-16 yolov8_bmcv.soc yolov11s_fp16_1b.bmodel 0.475 0.645
SE9-16 yolov8_bmcv.py yolov11s_int8_1b.bmodel 0.463 0.629
SE9-16 yolov8_bmcv.soc yolov11s_int8_1b.bmodel 0.468 0.638
SE9-16 yolov8_bmcv.py yolov11s_int8_4b.bmodel 0.463 0.629
SE9-16 yolov8_bmcv.soc yolov11s_int8_4b.bmodel 0.468 0.638
SE9-16 yolov8_bmcv.py yolov11s_int8_4b_2core.bmodel 0.463 0.629
SE9-16 yolov8_bmcv.soc yolov11s_int8_4b_2core.bmodel 0.468 0.638
SE9-16 yolov8_bmcv.py yolov12s_fp32_1b.bmodel 0.474 0.640
SE9-16 yolov8_bmcv.soc yolov12s_fp32_1b.bmodel 0.480 0.650
SE9-16 yolov8_bmcv.py yolov12s_fp16_1b.bmodel 0.474 0.640
SE9-16 yolov8_bmcv.soc yolov12s_fp16_1b.bmodel 0.480 0.651
SE9-16 yolov8_bmcv.py yolov12s_int8_1b.bmodel 0.466 0.631
SE9-16 yolov8_bmcv.soc yolov12s_int8_1b.bmodel 0.472 0.641
SE9-16 yolov8_bmcv.py yolov12s_int8_4b.bmodel 0.466 0.631
SE9-16 yolov8_bmcv.soc yolov12s_int8_4b.bmodel 0.472 0.641
SE9-16 yolov8_bmcv.py yolov12s_int8_4b_core.bmodel 0.466 0.631
SE9-16 yolov8_bmcv.soc yolov12s_int8_4b_core.bmodel 0.472 0.641
SE9-8 yolov8_bmcv.py yolov8s_fp32_1b.bmodel 0.447 0.610
SE9-8 yolov8_bmcv.soc yolov8s_fp32_1b.bmodel 0.453 0.620
SE9-8 yolov8_bmcv.py yolov8s_fp16_1b.bmodel 0.447 0.610
SE9-8 yolov8_bmcv.soc yolov8s_fp16_1b.bmodel 0.453 0.620
SE9-8 yolov8_bmcv.py yolov8s_int8_1b.bmodel 0.442 0.607
SE9-8 yolov8_bmcv.soc yolov8s_int8_1b.bmodel 0.450 0.618
SE9-8 yolov8_bmcv.py yolov8s_int8_4b.bmodel 0.442 0.607
SE9-8 yolov8_bmcv.soc yolov8s_int8_4b.bmodel 0.450 0.618
SE9-8 yolov8_bmcv.py yolov9s_fp32_1b.bmodel 0.465 0.630
SE9-8 yolov8_bmcv.soc yolov9s_fp32_1b.bmodel 0.469 0.637
SE9-8 yolov8_bmcv.py yolov9s_fp16_1b.bmodel 0.463 0.630
SE9-8 yolov8_bmcv.soc yolov9s_fp16_1b.bmodel 0.469 0.637
SE9-8 yolov8_bmcv.py yolov9s_int8_1b.bmodel 0.454 0.623
SE9-8 yolov8_bmcv.soc yolov9s_int8_1b.bmodel 0.459 0.631
SE9-8 yolov8_bmcv.py yolov9s_int8_4b.bmodel 0.454 0.623
SE9-8 yolov8_bmcv.soc yolov9s_int8_4b.bmodel 0.459 0.631
SE9-8 yolov8_bmcv.py yolov11s_fp32_1b.bmodel 0.471 0.638
SE9-8 yolov8_bmcv.soc yolov11s_fp32_1b.bmodel 0.476 0.645
SE9-8 yolov8_bmcv.py yolov11s_fp16_1b.bmodel 0.471 0.638
SE9-8 yolov8_bmcv.soc yolov11s_fp16_1b.bmodel 0.475 0.645
SE9-8 yolov8_bmcv.py yolov11s_int8_1b.bmodel 0.463 0.629
SE9-8 yolov8_bmcv.soc yolov11s_int8_1b.bmodel 0.468 0.638
SE9-8 yolov8_bmcv.py yolov11s_int8_4b.bmodel 0.463 0.629
SE9-8 yolov8_bmcv.soc yolov11s_int8_4b.bmodel 0.468 0.638
SE9-8 yolov8_bmcv.py yolov12s_fp32_1b.bmodel 0.474 0.640
SE9-8 yolov8_bmcv.soc yolov12s_fp32_1b.bmodel 0.480 0.650
SE9-8 yolov8_bmcv.py yolov12s_fp16_1b.bmodel 0.474 0.640
SE9-8 yolov8_bmcv.soc yolov12s_fp16_1b.bmodel 0.480 0.651
SE9-8 yolov8_bmcv.py yolov12s_int8_1b.bmodel 0.466 0.631
SE9-8 yolov8_bmcv.soc yolov12s_int8_1b.bmodel 0.472 0.641
SE9-8 yolov8_bmcv.py yolov12s_int8_4b.bmodel 0.466 0.631
SE9-8 yolov8_bmcv.soc yolov12s_int8_4b.bmodel 0.472 0.641

测试说明

  1. 由于sdk版本之间可能存在差异,实际运行结果与本表有<0.01的精度误差是正常的;
  2. AP@IoU=0.5:0.95为area=all对应的指标;
  3. 在搭载了相同TPU和SOPHONSDK的PCIe或SoC平台上,相同程序的精度一致,SE5系列对应BM1684,SE7系列对应BM1684X,SE9系列中,SE9-16对应BM1688,SE9-8对应CV186X;

6. 性能测试

6.1 bmrt_test

使用bmrt_test测试模型的理论性能:

# 请根据实际情况修改要测试的bmodel路径和devid参数
bmrt_test --bmodel models/BM1684X/yolov8s_fp32_1b.bmodel

测试结果中的calculate time就是模型推理的时间,多batch size模型应当除以相应的batch size才是每张图片的理论推理时间。 测试各个模型的理论推理时间,结果如下:

测试模型 calculate time(ms)
BM1684X/yolov8s_fp32_1b.bmodel 29.29
BM1684X/yolov8s_fp16_1b.bmodel 5.59
BM1684X/yolov8s_int8_1b.bmodel 2.92
BM1684X/yolov8s_int8_4b.bmodel 2.80
BM1684X/yolov9s_fp32_1b.bmodel 33.51
BM1684X/yolov9s_fp16_1b.bmodel 7.41
BM1684X/yolov9s_int8_1b.bmodel 4.83
BM1684X/yolov9s_int8_4b.bmodel 4.59
BM1684X/yolov11s_fp32_1b.bmodel 24.62
BM1684X/yolov11s_fp16_1b.bmodel 5.88
BM1684X/yolov11s_int8_1b.bmodel 3.27
BM1684X/yolov11s_int8_4b.bmodel 3.01
BM1684X/yolov12s_fp32_1b.bmodel 54.50
BM1684X/yolov12s_fp16_1b.bmodel 26.90
BM1684X/yolov12s_int8_1b.bmodel 22.33
BM1684X/yolov12s_int8_4b.bmodel 21.56
BM1688/yolov8s_fp32_1b.bmodel 161.70
BM1688/yolov8s_fp16_1b.bmodel 34.63
BM1688/yolov8s_int8_1b.bmodel 7.68
BM1688/yolov8s_int8_4b.bmodel 7.54
BM1688/yolov8s_int8_4b_2core.bmodel 4.81
BM1688/yolov9s_fp32_1b.bmodel 162.37
BM1688/yolov9s_fp16_1b.bmodel 41.21
BM1688/yolov9s_int8_1b.bmodel 18.03
BM1688/yolov9s_int8_4b.bmodel 17.78
BM1688/yolov9s_int8_4b_2core.bmodel 10.11
BM1688/yolov11s_fp32_1b.bmodel 131.64
BM1688/yolov11s_fp16_1b.bmodel 33.87
BM1688/yolov11s_int8_1b.bmodel 8.37
BM1688/yolov11s_int8_4b.bmodel 7.98
BM1688/yolov11s_int8_4b_2core.bmodel 5.32
BM1688/yolov12s_fp32_1b.bmodel 209.90
BM1688/yolov12s_fp16_1b.bmodel 68.92
BM1688/yolov12s_int8_1b.bmodel 59.99
BM1688/yolov12s_int8_4b.bmodel 60.16
BM1688/yolov12s_int8_4b_2core.bmodel 37.70
CV186X/yolov8s_fp32_1b.bmodel 165.35
CV186X/yolov8s_fp16_1b.bmodel 36.80
CV186X/yolov8s_int8_1b.bmodel 9.21
CV186X/yolov8s_int8_4b.bmodel 9.14
CV186X/yolov11s_fp32_1b.bmodel 135.15
CV186X/yolov11s_fp16_1b.bmodel 36.22
CV186X/yolov11s_int8_1b.bmodel 10.60
CV186X/yolov11s_int8_4b.bmodel 10.10
CV186X/yolov12s_fp32_1b.bmodel 209.44
CV186X/yolov12s_fp16_1b.bmodel 68.68
CV186X/yolov12s_int8_1b.bmodel 59.78
CV186X/yolov12s_int8_4b.bmodel 59.96

测试说明

  1. 性能测试结果具有一定的波动性;
  2. calculate time已折算为平均每张图片的推理时间;
  3. SoC和PCIe的测试结果基本一致。

6.2 程序运行性能

参考C++例程Python例程运行程序,并查看统计的解码时间、预处理时间、推理时间、后处理时间。C++例程打印的预处理时间、推理时间、后处理时间为整个batch处理的时间,需除以相应的batch size才是每张图片的处理时间。

在不同的测试平台上,使用不同的例程、模型测试datasets/coco/val2017_1000,conf_thresh=0.25,nms_thresh=0.7,性能测试结果如下:

测试平台 测试程序 测试模型 decode_time preprocess_time inference_time postprocess_time
SE7-32 yolov8_bmcv.py yolov8s_fp32_1b.bmodel 7.70 2.40 47.94 79.62
SE7-32 yolov8_bmcv.py yolov8s_fp16_1b.bmodel 3.39 2.39 13.71 79.90
SE7-32 yolov8_bmcv.py yolov8s_int8_1b.bmodel 3.38 2.38 10.34 77.68
SE7-32 yolov8_bmcv.py yolov8s_int8_4b.bmodel 3.01 2.20 9.22 73.47
SE7-32 yolov8_bmcv.soc yolov8s_fp32_1b.bmodel 2.63 1.35 42.25 33.24
SE7-32 yolov8_bmcv.soc yolov8s_fp16_1b.bmodel 2.63 1.35 8.12 34.47
SE7-32 yolov8_bmcv.soc yolov8s_int8_1b.bmodel 2.62 1.35 4.61 31.42
SE7-32 yolov8_bmcv.soc yolov8s_int8_4b.bmodel 2.49 1.30 4.47 30.96
SE7-32 yolov8_bmcv.py yolov9s_fp32_1b.bmodel 4.58 2.40 143.60 79.54
SE7-32 yolov8_bmcv.py yolov9s_fp16_1b.bmodel 3.34 2.39 27.87 86.25
SE7-32 yolov8_bmcv.py yolov9s_int8_1b.bmodel 3.35 2.39 16.29 97.64
SE7-32 yolov8_bmcv.py yolov9s_int8_4b.bmodel 3.01 2.21 14.99 93.01
SE7-32 yolov8_bmcv.soc yolov9s_fp32_1b.bmodel 2.62 1.36 137.97 35.07
SE7-32 yolov8_bmcv.soc yolov9s_fp16_1b.bmodel 2.62 1.36 22.21 34.56
SE7-32 yolov8_bmcv.soc yolov9s_int8_1b.bmodel 2.63 1.35 10.65 38.48
SE7-32 yolov8_bmcv.soc yolov9s_int8_4b.bmodel 2.50 1.30 10.30 37.94
SE7-32 yolov8_bmcv.py yolov12s_fp32_1b.bmodel 3.26 2.35 57.20 5.79
SE7-32 yolov8_bmcv.soc yolov12s_fp32_1b.bmodel 2.67 1.38 54.81 9.56
SE7-32 yolov8_bmcv.py yolov12s_fp16_1b.bmodel 3.22 2.34 29.49 5.77
SE7-32 yolov8_bmcv.soc yolov12s_fp16_1b.bmodel 2.67 1.39 27.11 9.56
SE7-32 yolov8_bmcv.py yolov12s_int8_1b.bmodel 3.19 2.36 24.96 5.69
SE7-32 yolov8_bmcv.soc yolov12s_int8_1b.bmodel 2.66 1.38 22.57 9.54
SE7-32 yolov8_bmcv.py yolov12s_int8_4b.bmodel 3.04 2.17 23.76 5.14
SE7-32 yolov8_bmcv.soc yolov12s_int8_4b.bmodel 2.53 1.31 21.85 9.50
SE9-16 yolov8_bmcv.py yolov8s_fp32_1b.bmodel 4.18 4.53 165.23 7.29
SE9-16 yolov8_bmcv.py yolov8s_fp16_1b.bmodel 4.20 4.47 38.08 7.30
SE9-16 yolov8_bmcv.py yolov8s_int8_1b.bmodel 4.21 4.49 11.08 7.46
SE9-16 yolov8_bmcv.py yolov8s_int8_4b.bmodel 3.99 4.17 10.24 6.51
SE9-16 yolov8_bmcv.soc yolov8s_fp32_1b.bmodel 3.28 2.60 162.00 4.06
SE9-16 yolov8_bmcv.soc yolov8s_fp16_1b.bmodel 3.31 2.58 34.93 4.03
SE9-16 yolov8_bmcv.soc yolov8s_int8_1b.bmodel 3.28 2.58 7.99 4.03
SE9-16 yolov8_bmcv.soc yolov8s_int8_4b.bmodel 3.09 2.46 7.90 3.98
SE9-16 yolov8_bmcv.py yolov8s_int8_4b_2core.bmodel 3.98 4.19 7.75 6.50
SE9-16 yolov8_bmcv.soc yolov8s_int8_4b_2core.bmodel 3.10 2.46 5.17 3.99
SE9-16 yolov8_bmcv.py yolov9s_fp32_1b.bmodel 4.19 4.51 165.90 7.28
SE9-16 yolov8_bmcv.py yolov9s_fp16_1b.bmodel 4.19 4.47 44.67 7.30
SE9-16 yolov8_bmcv.py yolov9s_int8_1b.bmodel 4.18 4.47 21.49 7.29
SE9-16 yolov8_bmcv.py yolov9s_int8_4b.bmodel 3.98 4.18 20.57 6.51
SE9-16 yolov8_bmcv.soc yolov9s_fp32_1b.bmodel 3.25 2.59 162.66 4.05
SE9-16 yolov8_bmcv.soc yolov9s_fp16_1b.bmodel 3.29 2.58 41.53 4.04
SE9-16 yolov8_bmcv.soc yolov9s_int8_1b.bmodel 3.29 2.58 18.34 4.04
SE9-16 yolov8_bmcv.soc yolov9s_int8_4b.bmodel 3.11 2.46 18.14 3.99
SE9-16 yolov8_bmcv.py yolov9s_int8_4b_2core.bmodel 3.96 4.17 12.82 6.51
SE9-16 yolov8_bmcv.soc yolov9s_int8_4b_2core.bmodel 3.09 2.46 10.47 3.99
SE9-16 yolov8_bmcv.py yolov11s_fp32_1b.bmodel 4.21 4.49 135.11 7.25
SE9-16 yolov8_bmcv.py yolov11s_fp16_1b.bmodel 4.17 4.50 37.24 7.27
SE9-16 yolov8_bmcv.py yolov11s_int8_1b.bmodel 4.20 4.48 11.83 7.18
SE9-16 yolov8_bmcv.py yolov11s_int8_4b.bmodel 4.00 4.19 10.75 6.40
SE9-16 yolov8_bmcv.soc yolov11s_fp32_1b.bmodel 3.27 2.60 131.90 4.06
SE9-16 yolov8_bmcv.soc yolov11s_fp16_1b.bmodel 3.29 2.58 34.18 4.04
SE9-16 yolov8_bmcv.soc yolov11s_int8_1b.bmodel 3.29 2.59 8.68 4.02
SE9-16 yolov8_bmcv.soc yolov11s_int8_4b.bmodel 3.10 2.46 8.33 3.98
SE9-16 yolov8_bmcv.py yolov11s_int8_4b_2core.bmodel 3.99 4.18 8.23 6.40
SE9-16 yolov8_bmcv.soc yolov11s_int8_4b_2core.bmodel 3.11 2.46 5.68 3.99
SE9-16 yolov8_bmcv.py yolov12s_fp32_1b.bmodel 8.54 4.52 213.61 7.60
SE9-16 yolov8_bmcv.soc yolov12s_fp32_1b.bmodel 3.21 2.61 210.32 4.08
SE9-16 yolov8_bmcv.py yolov12s_fp16_1b.bmodel 5.30 4.51 72.61 7.58
SE9-16 yolov8_bmcv.soc yolov12s_fp16_1b.bmodel 3.25 2.61 69.31 4.05
SE9-16 yolov8_bmcv.py yolov12s_int8_1b.bmodel 5.83 4.50 63.46 7.48
SE9-16 yolov8_bmcv.soc yolov12s_int8_1b.bmodel 3.27 2.61 60.38 4.05
SE9-16 yolov8_bmcv.py yolov12s_int8_4b.bmodel 5.35 4.16 62.94 6.62
SE9-16 yolov8_bmcv.soc yolov12s_int8_4b.bmodel 3.06 2.49 60.57 4.00
SE9-16 yolov8_bmcv.py yolov12s_int8_4b_2core.bmodel 5.55 4.16 40.36 6.63
SE9-16 yolov8_bmcv.soc yolov12s_int8_4b_2core.bmodel 3.08 2.49 37.96 4.01
SE9-8 yolov8_bmcv.py yolov8s_fp32_1b.bmodel 4.22 4.51 168.83 7.57
SE9-8 yolov8_bmcv.py yolov8s_fp16_1b.bmodel 4.25 4.50 40.15 7.66
SE9-8 yolov8_bmcv.py yolov8s_int8_1b.bmodel 4.21 4.48 12.62 7.59
SE9-8 yolov8_bmcv.py yolov8s_int8_4b.bmodel 3.95 4.18 11.83 6.89
SE9-8 yolov8_bmcv.soc yolov8s_fp32_1b.bmodel 3.25 2.61 165.69 4.05
SE9-8 yolov8_bmcv.soc yolov8s_fp16_1b.bmodel 3.27 2.60 37.13 4.02
SE9-8 yolov8_bmcv.soc yolov8s_int8_1b.bmodel 3.27 2.60 9.54 4.04
SE9-8 yolov8_bmcv.soc yolov8s_int8_4b.bmodel 3.07 2.48 9.55 3.99
SE9-8 yolov8_bmcv.py yolov9s_fp32_1b.bmodel 4.16 4.51 169.02 7.59
SE9-8 yolov8_bmcv.py yolov9s_fp16_1b.bmodel 4.17 4.50 47.11 7.56
SE9-8 yolov8_bmcv.py yolov9s_int8_1b.bmodel 4.17 4.51 23.57 7.58
SE9-8 yolov8_bmcv.py yolov9s_int8_4b.bmodel 3.95 4.17 22.70 6.80
SE9-8 yolov8_bmcv.soc yolov9s_fp32_1b.bmodel 3.25 2.61 165.91 4.05
SE9-8 yolov8_bmcv.soc yolov9s_fp16_1b.bmodel 3.27 2.60 44.02 4.03
SE9-8 yolov8_bmcv.soc yolov9s_int8_1b.bmodel 3.27 2.60 20.50 4.03
SE9-8 yolov8_bmcv.soc yolov9s_int8_4b.bmodel 3.07 2.48 20.37 4.01
SE9-8 yolov8_bmcv.py yolov11s_fp32_1b.bmodel 4.21 4.52 138.64 7.56
SE9-8 yolov8_bmcv.py yolov11s_fp16_1b.bmodel 4.16 4.49 39.61 7.55
SE9-8 yolov8_bmcv.py yolov11s_int8_1b.bmodel 4.18 4.49 14.02 7.43
SE9-8 yolov8_bmcv.py yolov11s_int8_4b.bmodel 3.96 4.18 12.79 6.65
SE9-8 yolov8_bmcv.soc yolov11s_fp32_1b.bmodel 3.26 2.61 135.49 4.05
SE9-8 yolov8_bmcv.soc yolov11s_fp16_1b.bmodel 3.27 2.60 36.59 4.04
SE9-8 yolov8_bmcv.soc yolov11s_int8_1b.bmodel 3.27 2.60 10.93 4.03
SE9-8 yolov8_bmcv.soc yolov11s_int8_4b.bmodel 3.08 2.48 10.47 4.00
SE9-8 yolov8_bmcv.py yolov12s_fp32_1b.bmodel 8.81 4.52 213.03 7.63
SE9-8 yolov8_bmcv.soc yolov12s_fp32_1b.bmodel 3.26 2.60 209.85 4.08
SE9-8 yolov8_bmcv.py yolov12s_fp16_1b.bmodel 4.21 4.49 72.26 7.59
SE9-8 yolov8_bmcv.soc yolov12s_fp16_1b.bmodel 3.24 2.60 69.05 4.05
SE9-8 yolov8_bmcv.py yolov12s_int8_1b.bmodel 4.77 4.50 63.41 7.48
SE9-8 yolov8_bmcv.soc yolov12s_int8_1b.bmodel 3.24 2.60 60.16 4.05
SE9-8 yolov8_bmcv.py yolov12s_int8_4b.bmodel 4.48 4.15 62.67 6.63
SE9-8 yolov8_bmcv.soc yolov12s_int8_4b.bmodel 3.05 2.49 60.36 4.02

测试说明

  1. 时间单位均为毫秒(ms),统计的时间均为平均每张图片处理的时间;
  2. 性能测试结果具有一定的波动性,建议多次测试取平均值;
  3. SE5-16/SE7-32的主控处理器均为8核[email protected],SE9-16为8核[email protected],SE9-8为6核[email protected]上的性能由于处理器的不同可能存在较大差异;
  4. 图片分辨率对解码时间影响较大,推理结果对后处理时间影响较大,不同的测试图片可能存在较大差异,不同的阈值对后处理时间影响较大。

8. FAQ

请参考FAQ查看一些常见的问题与解答。