-
Notifications
You must be signed in to change notification settings - Fork 0
/
my_pose_track_v3_dell.py
1188 lines (1019 loc) · 49.8 KB
/
my_pose_track_v3_dell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
# -*- coding:utf8 -*-
"""
Author: Haoming Chen
E-mail: [email protected]
Time: 2020/02/03
Description: 利用未来帧gt的信息,从未来回到过去进行矫正。
"""
import time
import argparse
# import vision essentials
import cv2
import numpy as np
import tensorflow as tf
import logging
# import Network
from network_MSRA152 import Network
# detector utils
from detector.detector_yolov3 import * ##
# pose estimation utils
from HPE.dataset import Preprocessing
from HPE.config import cfg
from tfflat.base import Tester
from tfflat.utils import mem_info
from tfflat.logger import colorlogger
# from nms.gpu_nms import gpu_nms
# from nms.cpu_nms import cpu_nms
# import GCN utils
from graph import visualize_pose_matching
from graph.visualize_pose_matching import *
# import my own utils
import sys, os, time
sys.path.append(os.path.abspath("./graph"))
sys.path.append(os.path.abspath("./utils"))
from utils_json import *
from utils_io_file import *
from utils_io_folder import *
from visualizer import *
from visualizer import visualizer
from utils_choose import *
import logging
from sheen import Str, ColoredHandler
from my_toolbox.json_utils import *
from my_toolbox.bipartite_graph import *
from tqdm import tqdm
flag_visualize = True
flag_nms = False # Default is False, unless you know what you are doing
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
################
##单纯为了Debug
image_crop_output_path = '/media/D/light-track/data/demo/crop'
image_seed_crop_output_path = '/media/D/light-track/data/demo/seed_crop'
tracking_gt_info = []
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(ColoredHandler())
################
def initialize_parameters():
# global video_name, img_id
global nms_method, nms_thresh, min_scores, min_box_size
nms_method = 'nms'
nms_thresh = 1.
min_scores = 1e-10
min_box_size = 0.
global keyframe_interval, enlarge_scale, pose_matching_threshold
keyframe_interval = 40 # choice examples: [2, 3, 5, 8, 10, 20, 40, 100, ....]
enlarge_scale = 0.2 # how much to enlarge the bbox before pose estimation
pose_matching_threshold = 0.5
global flag_flip
flag_flip = True
global total_time_POSE_ESTIMATOR, total_time_POSE_SIMILARITY, total_time_DET, total_time_ALL, total_time_ASSOCIATE
global total_num_FRAMES, total_num_PERSONS, total_num_VIDEOS
total_time_POSE_ESTIMATOR = 0
total_time_POSE_SIMILARITY = 0
total_time_DET = 0
total_time_ALL = 0
total_time_ASSOCIATE = 0
total_num_VIDEOS = 0
total_num_FRAMES = 0
total_num_PERSONS = 0
"""test"""
global filter_bbox_number, iou_alpha1, pose_alpha1
filter_bbox_number = 0
iou_alpha1 = 1.5
pose_alpha1 = -0.95 # 求的是pose差异值,差异值越小表示越越相似。
return
def light_track(pose_estimator,
image_folder, output_json_path,
visualize_folder, output_video_path, gt_info):
global total_time_POSE_ESTIMATOR, total_time_POSE_SIMILARITY, total_time_DET, total_time_ALL, total_time_ASSOCIATE
global video_name, iou_alpha1, pose_alpha1
global filter_bbox_number, total_num_FRAMES, total_num_PERSONS, total_num_VIDEOS
''' 1. statistics: get total time for lighttrack processing'''
st_time_total = time.time()
### hyper-papermet
keypoints_number = 15
interval = 5
bbox_dets_list_list = []
keypoints_list_list = []
num_imgs = len(gt_info)
first_img_id = 0
start_from_labeled = False
if start_from_labeled:
first_img_id = find_first_labeled_opensvai_json(gt_info)
next_id = 0 # track_id 从0开始算
img_id = first_img_id
total_num_FRAMES += num_imgs
gt_frame_index_list = find_gt_frame_index_list(gt_info, interval=interval)
logger.info("video_name:{}".format(video_name))
while img_id < num_imgs:
## loop Initialization
img_gt_info = gt_info[img_id]
image_name, labeled, candidates_info = read_image_data_opensvai_json(img_gt_info)
img_path = os.path.join(image_folder, image_name)
bbox_dets_list = [] # keyframe: start from empty
keypoints_list = [] # keyframe: start from empty
prev_frame_img_id = max(0, img_id - first_img_id - 1)
# 假如第一帧是gt帧,那么直接复制gt的结果,放到list_list中
if start_from_labeled and img_id == first_img_id:
num_dets = len(candidates_info)
for det_id in range(num_dets):
track_id, bbox_det, keypoints = get_candidate_info_opensvai_json(candidates_info, det_id)
# first帧直接使用
bbox_det_dict = {"img_id": img_id,
"det_id": det_id,
"imgpath": img_path,
"track_id": track_id,
"bbox": bbox_det}
keypoints_dict = {"img_id": img_id,
"det_id": det_id,
"imgpath": img_path,
"track_id": track_id,
"keypoints": keypoints}
bbox_dets_list.append(bbox_det_dict)
keypoints_list.append(keypoints_dict)
next_id = max(next_id, track_id)
next_id += 1
bbox_dets_list_list.append(bbox_dets_list)
keypoints_list_list.append(keypoints_list)
else:
#### 持续跟踪,当img_id是gt帧的时候会将gt和预测的进行比较.
logger.info("Tracing,img_id:{}".format(img_id))
candidates_total = []
st_time_DET = time.time()
candidates_from_detector = inference_yolov3(img_path)
end_time_DET = time.time()
total_time_DET += (end_time_DET - st_time_DET)
candidates_from_prev = []
bbox_list_prev_frame = []
''' 根据先前帧的信息补充框 '''
if img_id > first_img_id:
bbox_list_prev_frame = bbox_dets_list_list[prev_frame_img_id].copy()
keypoints_list_prev_frame = keypoints_list_list[prev_frame_img_id].copy()
num_prev_bbox = len(bbox_list_prev_frame)
for prev_det_id in range(num_prev_bbox):
# obtain bbox position and track id
keypoints = keypoints_list_prev_frame[prev_det_id]['keypoints']
bbox_det_next = get_bbox_from_keypoints(keypoints)
if bbox_invalid(bbox_det_next):
continue
# xywh
candidates_from_prev.append(bbox_det_next)
''' 拿到本帧全部的候选框 '''
candidates_total = candidates_from_detector + candidates_from_prev
num_candidate = len(candidates_total)
''' 使用关节点的置信度来作为bbox的置信度 '''
candidates_dets = []
for candidate_id in range(num_candidate):
bbox_det = candidates_total[candidate_id]
bbox_det_dict = {"img_id": img_id,
"det_id": candidate_id,
"imgpath": img_path,
"track_id": None,
"bbox": bbox_det}
st_time_pose = time.time()
keypoints = inference_keypoints(pose_estimator, bbox_det_dict)[0]['keypoints']
end_time_pose = time.time()
total_time_POSE_ESTIMATOR += (end_time_pose - st_time_pose)
bbox_det_next = xywh_to_x1y1x2y2(bbox_det)
score = sum(keypoints[2::3]) / keypoints_number
# 不知道为什么他这个pose的置信度会高于1
if bbox_invalid(bbox_det_next) or score < 0.7:
filter_bbox_number += 1
continue
candidate_det = bbox_det_next + [score]
candidates_dets.append(candidate_det)
keypoints_dict = {"img_id": img_id,
"det_id": candidate_id,
"imgpath": img_path,
"track_id": None,
"keypoints": keypoints}
bbox_dets_list.append(bbox_det_dict)
keypoints_list.append(keypoints_dict)
# 根据bbox的置信度来使用nms
keep = py_cpu_nms(np.array(candidates_dets, dtype=np.float32), 0.5) if len(candidates_dets) > 0 else []
candidates_total = np.array(candidates_total)[keep]
t = bbox_dets_list.copy()
k = keypoints_list.copy()
# 筛选过后的
bbox_dets_list = [t[i] for i in keep]
keypoints_list = [k[i] for i in keep]
""" Data association """
cur_det_number = len(candidates_total)
prev_det_number = len(bbox_list_prev_frame)
if img_id == first_img_id or prev_det_number == 0:
for det_id, bbox_det_dict in enumerate(bbox_dets_list):
keypoints_dict = keypoints_list[det_id]
bbox_det_dict['det_id'] = det_id
keypoints_dict['det_id'] = det_id
track_id = next_id
bbox_det_dict['track_id'] = track_id
keypoints_dict['track_id'] = track_id
next_id = max(next_id, track_id)
next_id += 1
else:
scores = np.zeros((cur_det_number, prev_det_number))
for det_id in range(cur_det_number):
bbox_det_dict = bbox_dets_list[det_id]
keypoints_dict = keypoints_list[det_id]
bbox_det = bbox_det_dict['bbox']
keypoints = keypoints_dict['keypoints']
# 计算当前帧的bbox和先前帧bboxes的分数
for prev_det_id in range(prev_det_number):
prev_bbox_det_dict = bbox_list_prev_frame[prev_det_id]
prev_keypoints_dict = keypoints_list_prev_frame[prev_det_id]
iou_score = iou(bbox_det, prev_bbox_det_dict['bbox'], xyxy=False)
if iou_score > 0.5:
scores[det_id, prev_det_id] = iou_alpha1 * iou_score
st_time_ass = time.time()
bbox_dets_list, keypoints_list, now_next_id = bipartite_graph_matching(bbox_dets_list,
bbox_list_prev_frame, scores,
keypoints_list, next_id)
end_time_ass = time.time()
total_time_ASSOCIATE += (end_time_ass - st_time_ass)
next_id = now_next_id
if len(bbox_dets_list) == 0:
bbox_det_dict = {"img_id": img_id,
"det_id": 0,
"track_id": None,
"imgpath": img_path,
"bbox": [0, 0, 2, 2]}
bbox_dets_list.append(bbox_det_dict)
keypoints_dict = {"img_id": img_id,
"det_id": 0,
"track_id": None,
"imgpath": img_path,
"keypoints": []}
keypoints_list.append(keypoints_dict)
bbox_dets_list_list.append(bbox_dets_list)
keypoints_list_list.append(keypoints_list)
##########################################
#### 如果是gt帧则会与预测帧的结果进行比较 ####
##########################################
if img_id in gt_frame_index_list and gt_frame_index_list.index(img_id) >= 1:
logger.info("type:{},img_id:{}".format('gt_guide', img_id))
# gt frame
num_dets = len(candidates_info)
bbox_list_prediction = bbox_dets_list_list[img_id - first_img_id].copy()
keypoints_list_prediction = keypoints_list_list[img_id - first_img_id].copy()
bbox_list_gt = []
keypoints_list_gt = []
for det_id in range(num_dets): # 组装gt帧的候选信息。
track_id, bbox_det, keypoints = get_candidate_info_opensvai_json(candidates_info, det_id)
bbox_det_dict = {"img_id": img_id,
"det_id": det_id,
"imgpath": img_path,
"track_id": track_id,
"bbox": bbox_det}
keypoints_dict = {"img_id": img_id,
"det_id": det_id,
"imgpath": img_path,
"track_id": track_id,
"keypoints": keypoints}
bbox_list_gt.append(bbox_det_dict)
keypoints_list_gt.append(keypoints_dict)
if len(bbox_list_gt) > 0:
# 如果gt帧是有bbox的,那么使用gt的信息覆盖. 覆盖前需要纠正gt帧的track_id 。
bbox_dets_list_list[img_id - first_img_id] = bbox_list_gt
keypoints_list_list[img_id - first_img_id] = keypoints_list_gt
## TODO 纠正gt的track_id
### 判断是否需要去纠正gt的前几帧。
need_correct = distance_between_gt_prediction(
gt_dict={"det": bbox_list_gt, "keypoints": keypoints_list_gt},
predict_dict={"det": bbox_list_prediction,
"keypoints": keypoints_list_prediction})
if need_correct:
## 往前进行矫正
correct_index = img_id - 1
correct_end_index = img_id - int(interval / 2)
# 从后往前
while correct_index >= correct_end_index:
## 假设框是对的,id错了
## 此时的prev_det_number 是gt
bbox_dets_list = bbox_dets_list_list[correct_index - first_img_id]
keypoints_list = keypoints_list_list[correct_index - first_img_id]
cur_det_number = len(bbox_dets_list)
gt_det_number = len(bbox_list_gt)
# gt 是已完成匹配的,cur是待匹配的
scores = np.zeros((cur_det_number, gt_det_number))
for cur_det_id in range(cur_det_number):
bbox_det_dict = bbox_dets_list[cur_det_id]
keypoints_dict = keypoints_list[cur_det_id]
bbox_det = bbox_det_dict['bbox']
keypoints = keypoints_dict['keypoints']
# 计算当前帧的bbox和先前帧bboxes的分数,
for gt_det_id in range(gt_det_number):
bbox_det_dict_gt = bbox_list_gt[gt_det_id]
iou_score = iou(bbox_det, bbox_det_dict_gt['bbox'], xyxy=False)
if iou_score > 0.2:
scores[cur_det_id, gt_det_id] = iou_alpha1 * iou_score
if gt_det_number > 0 and cur_det_number > 0:
bbox_dets_list, keypoints_list, now_next_id = bipartite_graph_matching(bbox_dets_list,
bbox_list_gt,
scores,
keypoints_list,
next_id)
# 这一帧没有一个保留下来的bbox
if len(bbox_dets_list) == 0:
bbox_det_dict = {"img_id": img_id,
"det_id": 0,
"track_id": None,
"imgpath": img_path,
"bbox": [0, 0, 2, 2]}
bbox_dets_list.append(bbox_det_dict)
keypoints_dict = {"img_id": img_id,
"det_id": 0,
"track_id": None,
"imgpath": img_path,
"keypoints": []}
keypoints_list.append(keypoints_dict)
bbox_dets_list_list[correct_index - first_img_id] = bbox_dets_list.copy()
keypoints_list_list[correct_index - first_img_id] = keypoints_list.copy()
correct_index -= 1
img_id += 1
''' 1. statistics: get total time for lighttrack processing'''
end_time_total = time.time()
total_time_ALL += (end_time_total - st_time_total)
# convert results into openSVAI format
print("Exporting Results in openSVAI Standard Json Format...")
poses_standard = pose_to_standard_mot(keypoints_list_list, bbox_dets_list_list)
# json_str = python_to_json(poses_standard)
# print(json_str)
# output json file
pose_json_folder, _ = get_parent_folder_from_path(output_json_path)
create_folder(pose_json_folder)
write_json_to_file(poses_standard, output_json_path)
print("Json Export Finished!")
# visualization
if flag_visualize is True:
print("Visualizing Pose Tracking Results...")
create_folder(visualize_folder)
visualizer.show_all_from_standard_json(output_json_path, classes, joint_pairs, joint_names,
image_folder,
visualize_folder,
flag_track=True)
print("Visualization Finished!")
img_paths = get_immediate_childfile_paths(visualize_folder)
avg_fps = total_num_FRAMES / total_time_ALL
# make_video_from_images(img_paths, output_video_path, fps=avg_fps, size=None, is_color=True, format="XVID")
fps = 5 # 25 原来
visualizer.make_video_from_images(img_paths, output_video_path, fps=fps, size=None, is_color=True,
format="XVID")
def distance_between_gt_prediction(gt_dict, predict_dict):
"""
判断是否需要矫正
:param gt_dict:
:param predict_dict:
:return:
"""
gt_det_list = gt_dict['det']
gt_keypoints_list = gt_dict['keypoints']
predict_det_list = predict_dict['det']
predict_keypoints_list = predict_dict['keypoints']
# TODO
# for gt_det_id in gt_det_list:
# gt_det = gt_det_list[gt_det_id]
# gt_track_id = gt_det['track_id']
# for predict_det_id in predict_det_list:
# predict_det = predict_det_list[predict_det_id]
# predict_track_id = predict_det['track_id']
# if predict_track_id == gt_track_id:
return True
def find_gt_frame_index_list(gt_info, interval=5):
gt_index_list = []
prev_gt_index = -1
for index in range(len(gt_info)):
if gt_info[index]['labeled'] is True and (len(gt_index_list) == 0 or (index - prev_gt_index) % interval == 0):
prev_gt_index = index
gt_index_list.append(index)
return gt_index_list
def bipartite_graph_matching(current_bbox_dict_list, prev_bbox_dict_list, score_between_two_frames,
current_keypoints_dict_list, next_id):
"""
二分图的最大权值匹配
current_bbox_dict_list ,不带track_id
prev_bbox_dict_list ,带track_id
score_between_two_frames, [current_bbox_id,prev_bbox_id]
:param current_bbox_dict_list:
:param prev_bbox_dict_list:
:param score_between_two_frames:
:param current_keypoints_dict_list:
:param next_id:
:return:
"""
prev_to_cur_match = Kuhn_Munkras_match(current_bbox_dict_list, prev_bbox_dict_list, score_between_two_frames)
result_bbox_dict_list = []
result_keypoints_dict_list = []
effective_prev_bbox_number = 0
for prev_bbox_dict in prev_bbox_dict_list:
if not bbox_invalid(prev_bbox_dict['bbox']):
effective_prev_bbox_number = effective_prev_bbox_number + 1
det_number = 0
assigned_cur_bbox = []
if effective_prev_bbox_number > 0:
for prev_index, cur_index in enumerate(prev_to_cur_match):
if not np.isnan(cur_index):
assigned_cur_bbox.append(cur_index)
cur_index = int(cur_index)
cur_bbox_dict = current_bbox_dict_list[cur_index]
cur_keypoints_dict = current_keypoints_dict_list[cur_index]
prev_track_id = prev_bbox_dict_list[prev_index]['track_id']
cur_bbox_dict['det_id'] = det_number
cur_bbox_dict['track_id'] = prev_track_id
cur_keypoints_dict['det_id'] = det_number
cur_keypoints_dict['track_id'] = prev_track_id
result_bbox_dict_list.append(cur_bbox_dict)
result_keypoints_dict_list.append(cur_keypoints_dict)
det_number += 1
# 没有分配track_id的bbox,给其新的track_id
for cur_index in range(len(current_bbox_dict_list)):
if cur_index not in assigned_cur_bbox:
cur_bbox_dict = current_bbox_dict_list[cur_index]
cur_keypoints_dict = current_keypoints_dict_list[cur_index]
cur_bbox_dict['det_id'] = det_number
cur_bbox_dict['track_id'] = next_id
cur_keypoints_dict['det_id'] = det_number
cur_keypoints_dict['track_id'] = next_id
result_bbox_dict_list.append(cur_bbox_dict)
result_keypoints_dict_list.append(cur_keypoints_dict)
det_number += 1
next_id += 1
else:
for current_index in range(len(current_bbox_dict_list)):
cur_bbox_dict = current_bbox_dict_list[current_index]
cur_keypoints_dict = current_keypoints_dict_list[current_index]
cur_bbox_dict['det_id'] = det_number
cur_bbox_dict['track_id'] = next_id
cur_keypoints_dict['det_id'] = det_number
cur_keypoints_dict['track_id'] = next_id
result_bbox_dict_list.append(cur_bbox_dict)
result_keypoints_dict_list.append(cur_keypoints_dict)
det_number += 1
next_id += 1
return result_bbox_dict_list, result_keypoints_dict_list, next_id
def distance_between_two_boxs(boxA, boxB):
x1, y1, _, _ = boxA
x2, y2, _, _ = boxB
distance = math.sqrt(math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
return distance
def get_track_id_SGCN(bbox_cur_frame, bbox_list_prev_frame, keypoints_cur_frame,
keypoints_list_prev_frame):
assert (len(bbox_list_prev_frame) == len(keypoints_list_prev_frame))
min_index = None
min_matching_score = sys.maxsize
global pose_matching_threshold
# if track_id is still not assigned, the person is really missing or track is really lost
track_id = -1
for det_index, bbox_det_dict in enumerate(bbox_list_prev_frame):
bbox_prev_frame = bbox_det_dict["bbox"]
# check the pose matching score
keypoints_dict = keypoints_list_prev_frame[det_index]
keypoints_prev_frame = keypoints_dict["keypoints"]
pose_matching_score = get_pose_matching_score(keypoints_cur_frame, keypoints_prev_frame,
bbox_cur_frame,
bbox_prev_frame)
if pose_matching_score <= pose_matching_threshold and pose_matching_score <= min_matching_score:
# match the target based on the pose matching score
min_matching_score = pose_matching_score
min_index = det_index
if min_index is None:
return -1, None
else:
track_id = bbox_list_prev_frame[min_index]["track_id"]
return track_id, min_index
def get_track_id_SpatialConsistency(bbox_cur_frame, bbox_list_prev_frame):
""" 用当前帧的bbox,去找之前帧中的bboxes的IOU值最大bbox。
使用一个bbox去前一帧找IOU值最大的。
"""
thresh = 0.3
max_iou_score = 0
max_index = -1
for bbox_index, bbox_det_dict in enumerate(bbox_list_prev_frame):
bbox_prev_frame = bbox_det_dict["bbox"]
boxA = xywh_to_x1y1x2y2(bbox_cur_frame)
boxB = xywh_to_x1y1x2y2(bbox_prev_frame)
iou_score = iou(boxA, boxB)
if iou_score > max_iou_score:
max_iou_score = iou_score
max_index = bbox_index
if max_iou_score > thresh:
track_id = bbox_list_prev_frame[max_index]["track_id"]
return track_id, max_index
else:
return -1, None
def get_pose_matching_score(keypoints_A, keypoints_B, bbox_A, bbox_B):
if keypoints_A == [] or keypoints_B == []:
print("graph not correctly generated!")
return sys.maxsize
if bbox_invalid(bbox_A) or bbox_invalid(bbox_B):
print("graph not correctly generated!")
return sys.maxsize
graph_A, flag_pass_check = keypoints_to_graph(keypoints_A, bbox_A)
if flag_pass_check is False:
print("graph not correctly generated!")
return sys.maxsize
graph_B, flag_pass_check = keypoints_to_graph(keypoints_B, bbox_B)
if flag_pass_check is False:
print("graph not correctly generated!")
return sys.maxsize
sample_graph_pair = (graph_A, graph_B)
data_A, data_B = graph_pair_to_data(sample_graph_pair)
start = time.time()
flag_match, dist = pose_matching(data_A, data_B)
end = time.time()
return dist
def is_target_lost(keypoints, method="max_average"):
num_keypoints = int(len(keypoints) / 3.0)
if method == "average":
# pure average
score = 0
for i in range(num_keypoints):
score += keypoints[3 * i + 2]
score /= num_keypoints * 1.0
print("target_score: {}".format(score))
elif method == "max_average":
score_list = keypoints[2::3]
score_list_sorted = sorted(score_list)
top_N = 4
assert (top_N < num_keypoints)
top_scores = [score_list_sorted[-i] for i in range(1, top_N + 1)]
score = sum(top_scores) / top_N
if score < 0.6:
return True
else:
return False
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4] # bbox打分
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
# 打分从大到小排列,取index
order = scores.argsort()[::-1]
# keep为最后保留的边框
keep = []
while order.size > 0:
# order[0]是当前分数最大的窗口,肯定保留
i = order[0]
keep.append(i)
# 计算窗口i与其他所有窗口的交叠部分的面积
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
# 交/并得到iou值
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# inds为所有与窗口i的iou值小于threshold值的窗口的index,其他窗口此次都被窗口i吸收
inds = np.where(ovr <= thresh)[0]
# order里面只保留与窗口i交叠面积小于threshold的那些窗口,由于ovr长度比order长度少1(不包含i),所以inds+1对应到保留的窗口
order = order[inds + 1]
return keep
def iou(boxA, boxB, xyxy=True):
# box: (x1, y1, x2, y2)
# determine the (x, y)-coordinates of the intersection rectangle
if not xyxy:
# 如果是xy wh那么要转换数据 - xy是最小坐标
b1_x1, b1_x2 = boxA[0], boxA[0] + boxA[2]
b1_y1, b1_y2 = boxA[1], boxA[1] + boxA[3]
b2_x1, b2_x2 = boxB[0], boxB[0] + boxB[2]
b2_y1, b2_y2 = boxB[1], boxB[1] + boxB[3]
xA = max(b1_x1, b2_x1)
yA = max(b1_y1, b2_y1)
xB = min(b1_x2, b2_x2)
yB = min(b1_y2, b2_y2)
else:
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# compute the area of both the prediction and ground-truth
# rectangles
if not xyxy:
boxAArea = (boxA[2] + 1) * (boxA[3] + 1)
boxBArea = (boxB[2] + 1) * (boxB[3] + 1)
else:
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) # w×h
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) # w×h
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou
def get_bbox_from_keypoints(keypoints_python_data):
if keypoints_python_data == [] or keypoints_python_data == 45 * [0]:
return [0, 0, 2, 2]
num_keypoints = len(keypoints_python_data)
x_list = []
y_list = []
for keypoint_id in range(int(num_keypoints / 3)):
x = keypoints_python_data[3 * keypoint_id]
y = keypoints_python_data[3 * keypoint_id + 1]
vis = keypoints_python_data[3 * keypoint_id + 2] # 是否可见
if vis != 0 and vis != 3:
x_list.append(x)
y_list.append(y)
min_x = min(x_list)
min_y = min(y_list)
max_x = max(x_list)
max_y = max(y_list)
if not x_list or not y_list:
return [0, 0, 2, 2]
scale = enlarge_scale # enlarge bbox by 20% with same center position
bbox = enlarge_bbox([min_x, min_y, max_x, max_y], scale)
bbox_in_xywh = x1y1x2y2_to_xywh(bbox)
return bbox_in_xywh
def enlarge_bbox(bbox, scale):
assert (scale > 0)
min_x, min_y, max_x, max_y = bbox
margin_x = int(0.5 * scale * (max_x - min_x))
margin_y = int(0.5 * scale * (max_y - min_y))
if margin_x < 0: margin_x = 2
if margin_y < 0: margin_y = 2
min_x -= margin_x
max_x += margin_x
min_y -= margin_y
max_y += margin_y
width = max_x - min_x
height = max_y - min_y
if max_y < 0 or max_x < 0 or width <= 0 or height <= 0 or width > 2000 or height > 2000:
min_x = 0
max_x = 2
min_y = 0
max_y = 2
bbox_enlarged = [min_x, min_y, max_x, max_y]
return bbox_enlarged
def inference_keypoints(pose_estimator, test_data):
cls_dets = test_data["bbox"]
# nms on the bboxes
if flag_nms is True:
cls_dets, keep = apply_nms(cls_dets, nms_method, nms_thresh)
test_data = np.asarray(test_data)[keep]
if len(keep) == 0:
return -1
else:
test_data = [test_data]
# crop and detect pose
pose_heatmaps, details, cls_skeleton, crops, start_id, end_id = get_pose_from_bbox(pose_estimator,
test_data,
cfg)
# get keypoint positions from pose
keypoints = get_keypoints_from_pose(pose_heatmaps, details, cls_skeleton, crops, start_id, end_id)
# dump results
results = prepare_results(test_data[0], keypoints, cls_dets)
return results
def apply_nms(cls_dets, nms_method, nms_thresh):
# nms and filter
keep = np.where((cls_dets[:, 4] >= min_scores) &
((cls_dets[:, 3] - cls_dets[:, 1]) * (
cls_dets[:, 2] - cls_dets[:, 0]) >= min_box_size))[0]
cls_dets = cls_dets[keep]
if len(cls_dets) > 0:
if nms_method == 'nms':
keep = gpu_nms(cls_dets, nms_thresh)
elif nms_method == 'soft':
keep = cpu_soft_nms(np.ascontiguousarray(cls_dets, dtype=np.float32), method=2)
else:
assert False
cls_dets = cls_dets[keep]
return cls_dets, keep
def get_pose_from_bbox(pose_estimator, test_data, cfg):
cls_skeleton = np.zeros(
(len(test_data), cfg.nr_skeleton, 3)) # cfg.nr_skeleton=joint number. size=number*3
crops = np.zeros((len(test_data), 4))
batch_size = 1
start_id = 0
end_id = min(len(test_data), batch_size)
test_imgs = []
details = []
for i in range(start_id, end_id):
test_img, detail = Preprocessing(test_data[i], stage='test')
test_imgs.append(test_img)
details.append(detail)
details = np.asarray(details)
feed = test_imgs
for i in range(end_id - start_id):
ori_img = test_imgs[i][0].transpose(1, 2, 0)
if flag_flip == True:
flip_img = cv2.flip(ori_img, 1)
feed.append(flip_img.transpose(2, 0, 1)[np.newaxis, ...])
feed = np.vstack(feed)
res = pose_estimator.predict_one([feed.transpose(0, 2, 3, 1).astype(np.float32)])[0]
res = res.transpose(0, 3, 1, 2)
if flag_flip == True:
for i in range(end_id - start_id):
fmp = res[end_id - start_id + i].transpose((1, 2, 0))
fmp = cv2.flip(fmp, 1)
fmp = list(fmp.transpose((2, 0, 1)))
for (q, w) in cfg.symmetry:
fmp[q], fmp[w] = fmp[w], fmp[q]
fmp = np.array(fmp)
res[i] += fmp
res[i] /= 2
pose_heatmaps = res
return pose_heatmaps, details, cls_skeleton, crops, start_id, end_id
def get_keypoints_from_pose(pose_heatmaps, details, cls_skeleton, crops, start_id, end_id):
res = pose_heatmaps
for test_image_id in range(start_id, end_id):
r0 = res[test_image_id - start_id].copy()
r0 /= 255.
r0 += 0.5
for w in range(cfg.nr_skeleton):
res[test_image_id - start_id, w] /= np.amax(res[test_image_id - start_id, w])
border = 10
dr = np.zeros(
(cfg.nr_skeleton, cfg.output_shape[0] + 2 * border, cfg.output_shape[1] + 2 * border))
dr[:, border:-border, border:-border] = res[test_image_id - start_id][:cfg.nr_skeleton].copy()
for w in range(cfg.nr_skeleton):
dr[w] = cv2.GaussianBlur(dr[w], (21, 21), 0)
for w in range(cfg.nr_skeleton):
lb = dr[w].argmax()
y, x = np.unravel_index(lb, dr[w].shape)
dr[w, y, x] = 0
lb = dr[w].argmax()
py, px = np.unravel_index(lb, dr[w].shape)
y -= border
x -= border
py -= border + y
px -= border + x
ln = (px ** 2 + py ** 2) ** 0.5
delta = 0.25
if ln > 1e-3:
x += delta * px / ln
y += delta * py / ln
x = max(0, min(x, cfg.output_shape[1] - 1))
y = max(0, min(y, cfg.output_shape[0] - 1))
cls_skeleton[test_image_id, w, :2] = (x * 4 + 2, y * 4 + 2)
cls_skeleton[test_image_id, w, 2] = r0[w, int(round(y) + 1e-10), int(round(x) + 1e-10)]
# map back to original images
crops[test_image_id, :] = details[test_image_id - start_id, :]
for w in range(cfg.nr_skeleton):
cls_skeleton[test_image_id, w, 0] = cls_skeleton[test_image_id, w, 0] / cfg.data_shape[
1] * (crops[test_image_id][2] - crops[test_image_id][0]) + crops[test_image_id][0]
cls_skeleton[test_image_id, w, 1] = cls_skeleton[test_image_id, w, 1] / cfg.data_shape[
0] * (crops[test_image_id][3] - crops[test_image_id][1]) + crops[test_image_id][1]
return cls_skeleton
def prepare_results(test_data, cls_skeleton, cls_dets):
cls_partsco = cls_skeleton[:, :, 2].copy().reshape(-1, cfg.nr_skeleton)
cls_scores = 1
dump_results = []
cls_skeleton = np.concatenate(
[cls_skeleton.reshape(-1, cfg.nr_skeleton * 3),
(cls_scores * cls_partsco.mean(axis=1))[:, np.newaxis]],
axis=1)
for i in range(len(cls_skeleton)):
result = dict(image_id=test_data['img_id'],
category_id=1,
score=float(round(cls_skeleton[i][-1], 4)),
keypoints=cls_skeleton[i][:-1].round(3).tolist())
dump_results.append(result)
return dump_results
def pose_to_standard_mot(keypoints_list_list, dets_list_list):
openSVAI_python_data_list = []
num_keypoints_list = len(keypoints_list_list)
num_dets_list = len(dets_list_list)
assert (num_keypoints_list == num_dets_list)
for i in range(num_dets_list):
dets_list = dets_list_list[i]
keypoints_list = keypoints_list_list[i]
if dets_list == []:
continue
img_path = dets_list[0]["imgpath"]
img_folder_path = os.path.dirname(img_path)
img_name = os.path.basename(img_path)
img_info = {"folder": img_folder_path,
"name": img_name,
"id": [int(i)]}
openSVAI_python_data = {"image": [], "candidates": []}
openSVAI_python_data["image"] = img_info
num_dets = len(dets_list)
num_keypoints = len(
keypoints_list) # number of persons, not number of keypoints for each person
candidate_list = []
for j in range(num_dets):
keypoints_dict = keypoints_list[j]
dets_dict = dets_list[j]
img_id = keypoints_dict["img_id"]
det_id = keypoints_dict["det_id"]
track_id = keypoints_dict["track_id"]
img_path = keypoints_dict["imgpath"]
bbox_dets_data = dets_list[det_id]
det = dets_dict["bbox"]
if det == [0, 0, 2, 2]:
# do not provide keypoints
candidate = {"det_bbox": [0, 0, 2, 2],
"det_score": 0}
else:
bbox_in_xywh = det[0:4]
keypoints = keypoints_dict["keypoints"]
track_score = sum(keypoints[2::3]) / len(keypoints) / 3.0
candidate = {"det_bbox": bbox_in_xywh,
"det_score": 1,
"track_id": track_id,
"track_score": track_score,
"pose_keypoints_2d": keypoints}
candidate_list.append(candidate)
openSVAI_python_data["candidates"] = candidate_list
openSVAI_python_data_list.append(openSVAI_python_data)
return openSVAI_python_data_list
def x1y1x2y2_to_xywh(det):
x1, y1, x2, y2 = det
w, h = int(x2) - int(x1), int(y2) - int(y1)
return [x1, y1, w, h]
def xywh_to_x1y1x2y2(det):
x1, y1, w, h = det
x2, y2 = x1 + w, y1 + h
return [x1, y1, x2, y2]
def bbox_invalid(bbox):
if bbox == [0, 0, 2, 2]:
return True
if bbox[2] <= 0 or bbox[3] <= 0 or bbox[2] > 2000 or bbox[3] > 2000:
return True
return False
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
"""
Removes detections with lower object confidence score than 'conf_thres' and performs
Non-Maximum Suppression to further filter detections.
Returns detections with shape: