forked from streamlit/streamlit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathst_dataframe_dimensions.py
40 lines (33 loc) · 1.31 KB
/
st_dataframe_dimensions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022-2024)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pandas as pd
import streamlit as st
# Explicitly seed the RNG for deterministic results
np.random.seed(0)
data = np.random.randn(100, 100)
df = pd.DataFrame(data)
st.dataframe(df)
st.dataframe(df, 250, 150)
st.dataframe(df, width=250)
st.dataframe(df, height=150)
st.dataframe(df, 5000, 5000)
st.dataframe(df, use_container_width=True)
small_df = pd.DataFrame(np.random.randn(100, 3))
st.dataframe(small_df, width=500)
st.dataframe(small_df, use_container_width=True)
st.dataframe(small_df, width=200, use_container_width=True)
st.dataframe(small_df, width=200, use_container_width=False)
one_col_df = pd.DataFrame(np.random.randn(100, 1))
st.dataframe(one_col_df, use_container_width=True)