forked from ivmai/bdwgc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reclaim.c
877 lines (782 loc) · 27.7 KB
/
reclaim.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved.
* Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
* Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2009-2022 Ivan Maidanski
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
#include "private/gc_priv.h"
#ifdef ENABLE_DISCLAIM
# include "gc/gc_disclaim.h"
#endif
GC_INNER signed_word GC_bytes_found = 0;
/* Number of bytes of memory reclaimed */
/* minus the number of bytes originally */
/* on free lists which we had to drop. */
#if defined(PARALLEL_MARK)
GC_INNER signed_word GC_fl_builder_count = 0;
/* Number of threads currently building free lists without */
/* holding the allocator lock. It is not safe to collect if */
/* this is nonzero. Also, together with the mark lock, it is */
/* used as a semaphore during marker threads startup. */
#endif /* PARALLEL_MARK */
/* We defer printing of leaked objects until we're done with the GC */
/* cycle, since the routine for printing objects needs to run outside */
/* the collector, e.g. without the allocator lock. */
#ifndef MAX_LEAKED
# define MAX_LEAKED 40
#endif
STATIC ptr_t GC_leaked[MAX_LEAKED] = { NULL };
STATIC unsigned GC_n_leaked = 0;
#ifdef AO_HAVE_store
GC_INNER volatile AO_t GC_have_errors = 0;
#else
GC_INNER GC_bool GC_have_errors = FALSE;
#endif
#if !defined(EAGER_SWEEP) && defined(ENABLE_DISCLAIM)
STATIC void GC_reclaim_unconditionally_marked(void);
#endif
GC_INLINE void GC_add_leaked(ptr_t leaked)
{
GC_ASSERT(I_HOLD_LOCK());
# ifndef SHORT_DBG_HDRS
if (GC_findleak_delay_free && !GC_check_leaked(leaked))
return;
# endif
GC_SET_HAVE_ERRORS();
if (GC_n_leaked < MAX_LEAKED) {
GC_leaked[GC_n_leaked++] = leaked;
/* Make sure it's not reclaimed this cycle */
GC_set_mark_bit(leaked);
}
}
/* Print all objects on the list after printing any smashed objects. */
/* Clear both lists. Called without the allocator lock held. */
GC_INNER void GC_print_all_errors(void)
{
static GC_bool printing_errors = FALSE;
GC_bool have_errors;
unsigned i, n_leaked;
ptr_t leaked[MAX_LEAKED];
LOCK();
if (printing_errors) {
UNLOCK();
return;
}
have_errors = get_have_errors();
printing_errors = TRUE;
n_leaked = GC_n_leaked;
if (n_leaked > 0) {
GC_ASSERT(n_leaked <= MAX_LEAKED);
BCOPY(GC_leaked, leaked, n_leaked * sizeof(ptr_t));
GC_n_leaked = 0;
BZERO(GC_leaked, n_leaked * sizeof(ptr_t));
}
UNLOCK();
if (GC_debugging_started) {
GC_print_all_smashed();
} else {
have_errors = FALSE;
}
if (n_leaked > 0) {
GC_err_printf("Found %u leaked objects:\n", n_leaked);
have_errors = TRUE;
}
for (i = 0; i < n_leaked; i++) {
ptr_t p = leaked[i];
# ifndef SKIP_LEAKED_OBJECTS_PRINTING
GC_print_heap_obj(p);
# endif
GC_free(p);
}
if (have_errors
# ifndef GC_ABORT_ON_LEAK
&& GETENV("GC_ABORT_ON_LEAK") != NULL
# endif
) {
ABORT("Leaked or smashed objects encountered");
}
LOCK();
printing_errors = FALSE;
UNLOCK();
}
/*
* reclaim phase
*
*/
/* Test whether a block is completely empty, i.e. contains no marked */
/* objects. This does not require the block to be in physical memory. */
GC_INNER GC_bool GC_block_empty(const hdr *hhdr)
{
return 0 == hhdr -> hb_n_marks;
}
STATIC GC_bool GC_block_nearly_full(const hdr *hhdr, size_t sz)
{
return hhdr -> hb_n_marks > HBLK_OBJS(sz) * 7 / 8;
}
/* TODO: This should perhaps again be specialized for USE_MARK_BYTES */
/* and USE_MARK_BITS cases. */
GC_INLINE ptr_t GC_clear_block(ptr_t q, size_t sz, word *pcount)
{
ptr_t *p = (ptr_t *)q;
ptr_t plim = q + sz;
/* Clear object, advance p to next object in the process. */
# ifdef USE_MARK_BYTES
GC_ASSERT((sz & 1) == 0);
GC_ASSERT((ADDR(p) & (2*sizeof(ptr_t)-1)) == 0);
p[1] = NULL; /* but do not clear link field */
for (p += 2; ADDR_LT((ptr_t)p, plim); p += 2) {
CLEAR_DOUBLE(p);
}
# else
p++; /* skip link field */
while (ADDR_LT((ptr_t)p, plim)) {
*p++ = NULL;
}
# endif
*pcount += sz;
return (ptr_t)p;
}
/*
* Restore unmarked small objects in h of size sz to the object
* free list. Returns the new list.
* Clears unmarked objects. Sz is in bytes.
*/
STATIC ptr_t GC_reclaim_clear(struct hblk *hbp, const hdr *hhdr, size_t sz,
ptr_t list, word *pcount)
{
size_t bit_no;
ptr_t p, plim;
GC_ASSERT(hhdr == GC_find_header(hbp));
# ifndef THREADS
GC_ASSERT(sz == hhdr -> hb_sz);
# else
/* Skip the assertion because of a potential race with GC_realloc. */
# endif
GC_ASSERT((sz & (sizeof(ptr_t)-1)) == 0);
/* Go through all objects in the block. */
p = hbp -> hb_body;
plim = p + HBLKSIZE - sz;
for (bit_no = 0; ADDR_GE(plim, p); bit_no += MARK_BIT_OFFSET(sz)) {
if (mark_bit_from_hdr(hhdr, bit_no)) {
p += sz;
} else {
/* The object is available - put it on list. */
obj_link(p) = list;
list = p;
FREE_PROFILER_HOOK(p);
p = GC_clear_block(p, sz, pcount);
}
}
return list;
}
/* The same thing, but don't clear objects: */
STATIC ptr_t GC_reclaim_uninit(struct hblk *hbp, const hdr *hhdr, size_t sz,
ptr_t list, word *pcount)
{
size_t bit_no;
word n_bytes_found = 0;
ptr_t p, plim;
# ifndef THREADS
GC_ASSERT(sz == hhdr -> hb_sz);
# endif
/* Go through all objects in the block. */
p = hbp -> hb_body;
plim = (ptr_t)hbp + HBLKSIZE - sz;
for (bit_no = 0; ADDR_GE(plim, p);
bit_no += MARK_BIT_OFFSET(sz), p += sz) {
if (!mark_bit_from_hdr(hhdr, bit_no)) {
n_bytes_found += sz;
/* The object is available - put it on list. */
obj_link(p) = list;
list = p;
FREE_PROFILER_HOOK(p);
}
}
*pcount += n_bytes_found;
return list;
}
#ifdef ENABLE_DISCLAIM
/* Call reclaim notifier for block's kind on each unmarked object in */
/* block, all within a pair of corresponding enter/leave callbacks. */
STATIC ptr_t GC_disclaim_and_reclaim(struct hblk *hbp, hdr *hhdr, size_t sz,
ptr_t list, word *pcount)
{
size_t bit_no;
ptr_t p, plim;
int (GC_CALLBACK *disclaim)(void *) =
GC_obj_kinds[hhdr -> hb_obj_kind].ok_disclaim_proc;
GC_ASSERT(disclaim != 0);
# ifndef THREADS
GC_ASSERT(sz == hhdr -> hb_sz);
# endif
p = hbp -> hb_body;
plim = p + HBLKSIZE - sz;
for (bit_no = 0; ADDR_GE(plim, p); bit_no += MARK_BIT_OFFSET(sz)) {
if (mark_bit_from_hdr(hhdr, bit_no)) {
p += sz;
} else if (disclaim(p)) {
set_mark_bit_from_hdr(hhdr, bit_no);
INCR_MARKS(hhdr);
p += sz;
} else {
obj_link(p) = list;
list = p;
FREE_PROFILER_HOOK(p);
p = GC_clear_block(p, sz, pcount);
}
}
return list;
}
#endif /* ENABLE_DISCLAIM */
/* Don't really reclaim objects, just check for unmarked ones: */
STATIC void GC_reclaim_check(struct hblk *hbp, const hdr *hhdr, size_t sz)
{
size_t bit_no;
ptr_t p, plim;
# ifndef THREADS
GC_ASSERT(sz == hhdr -> hb_sz);
# endif
/* Go through all objects in the block. */
p = hbp -> hb_body;
plim = p + HBLKSIZE - sz;
for (bit_no = 0; ADDR_GE(plim, p);
bit_no += MARK_BIT_OFFSET(sz), p += sz) {
if (!mark_bit_from_hdr(hhdr, bit_no))
GC_add_leaked(p);
}
}
/* Is a pointer-free block? Same as IS_PTRFREE() macro but uses */
/* unordered atomic access to avoid racing with GC_realloc. */
#ifdef AO_HAVE_load
# define IS_PTRFREE_SAFE(hhdr) (AO_load((AO_t *)&((hhdr) -> hb_descr)) == 0)
#else
/* No race as GC_realloc holds the allocator lock when updating hb_descr. */
# define IS_PTRFREE_SAFE(hhdr) IS_PTRFREE(hhdr)
#endif
/* Generic procedure to rebuild a free list in hbp. Also called */
/* directly from GC_malloc_many. sz is in bytes. */
GC_INNER ptr_t GC_reclaim_generic(struct hblk *hbp, hdr *hhdr, size_t sz,
GC_bool init, ptr_t list, word *pcount)
{
ptr_t result;
# ifndef PARALLEL_MARK
GC_ASSERT(I_HOLD_LOCK());
# endif
GC_ASSERT(GC_find_header(hbp) == hhdr);
# ifndef GC_DISABLE_INCREMENTAL
GC_remove_protection(hbp, 1, IS_PTRFREE_SAFE(hhdr));
# endif
# ifdef ENABLE_DISCLAIM
if ((hhdr -> hb_flags & HAS_DISCLAIM) != 0) {
result = GC_disclaim_and_reclaim(hbp, hhdr, sz, list, pcount);
} else
# endif
/* else */ if (init || GC_debugging_started) {
result = GC_reclaim_clear(hbp, hhdr, sz, list, pcount);
} else {
# ifndef AO_HAVE_load
GC_ASSERT(IS_PTRFREE(hhdr));
# endif
result = GC_reclaim_uninit(hbp, hhdr, sz, list, pcount);
}
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
return result;
}
/*
* Restore unmarked small objects in the block pointed to by hbp
* to the appropriate object free list.
* If entirely empty blocks are to be completely deallocated, then
* caller should perform that check.
*/
STATIC void GC_reclaim_small_nonempty_block(struct hblk *hbp, size_t sz,
GC_bool report_if_found)
{
hdr *hhdr;
GC_ASSERT(I_HOLD_LOCK());
hhdr = HDR(hbp);
hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
if (report_if_found) {
GC_reclaim_check(hbp, hhdr, sz);
} else {
struct obj_kind *ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
void **flh = &(ok -> ok_freelist[BYTES_TO_GRANULES(sz)]);
*flh = GC_reclaim_generic(hbp, hhdr, sz, ok -> ok_init, (ptr_t)(*flh),
(/* unsigned */ word *)&GC_bytes_found);
}
}
#ifdef ENABLE_DISCLAIM
STATIC void GC_disclaim_and_reclaim_or_free_small_block(struct hblk *hbp)
{
hdr *hhdr;
size_t sz;
struct obj_kind *ok;
void **flh;
void *flh_next;
GC_ASSERT(I_HOLD_LOCK());
hhdr = HDR(hbp);
sz = hhdr -> hb_sz;
ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
flh = &(ok -> ok_freelist[BYTES_TO_GRANULES(sz)]);
hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
flh_next = GC_reclaim_generic(hbp, hhdr, sz, ok -> ok_init, (ptr_t)(*flh),
(/* unsigned */ word *)&GC_bytes_found);
if (hhdr -> hb_n_marks) {
*flh = flh_next;
} else {
GC_bytes_found += (signed_word)HBLKSIZE;
GC_freehblk(hbp);
}
}
#endif /* ENABLE_DISCLAIM */
/* Restore an unmarked large object or an entirely empty blocks of */
/* small objects to the heap block free list. Otherwise enqueue the */
/* block for later processing by GC_reclaim_small_nonempty_block. */
/* If report_if_found is TRUE, then process any block immediately, and */
/* simply report free objects; do not actually reclaim them. */
STATIC void GC_CALLBACK GC_reclaim_block(struct hblk *hbp,
void *report_if_found)
{
hdr *hhdr;
size_t sz; /* size of objects in current block */
struct obj_kind *ok;
GC_ASSERT(I_HOLD_LOCK());
# if defined(CPPCHECK)
GC_noop1_ptr(report_if_found);
# endif
hhdr = HDR(hbp);
ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
# ifdef AO_HAVE_load
/* Atomic access is used to avoid racing with GC_realloc. */
sz = AO_load(&(hhdr -> hb_sz));
# else
/* No race as GC_realloc holds the allocator lock while */
/* updating hb_sz. */
sz = hhdr -> hb_sz;
# endif
if (sz > MAXOBJBYTES) { /* 1 big object */
if (!mark_bit_from_hdr(hhdr, 0)) {
if (report_if_found) {
GC_add_leaked((ptr_t)hbp);
} else {
# ifdef ENABLE_DISCLAIM
if (EXPECT(hhdr -> hb_flags & HAS_DISCLAIM, 0)) {
if (ok -> ok_disclaim_proc(hbp)) {
/* Not disclaimed => resurrect the object. */
set_mark_bit_from_hdr(hhdr, 0);
goto in_use;
}
}
# endif
if (sz > HBLKSIZE) {
GC_large_allocd_bytes -= HBLKSIZE * OBJ_SZ_TO_BLOCKS(sz);
}
GC_bytes_found += (signed_word)sz;
GC_freehblk(hbp);
FREE_PROFILER_HOOK(hbp);
}
} else {
# ifdef ENABLE_DISCLAIM
in_use:
# endif
if (IS_PTRFREE_SAFE(hhdr)) {
GC_atomic_in_use += sz;
} else {
GC_composite_in_use += sz;
}
}
} else {
GC_bool empty = GC_block_empty(hhdr);
# ifdef PARALLEL_MARK
/* Count can be low or one too high because we sometimes */
/* have to ignore decrements. Objects can also potentially */
/* be repeatedly marked by each marker. */
/* Here we assume 3 markers at most, but this is extremely */
/* unlikely to fail spuriously with more. And if it does, it */
/* should be looked at. */
GC_ASSERT(sz != 0 && (GC_markers_m1 > 1 ? 3 : GC_markers_m1 + 1)
* (HBLKSIZE/sz + 1) + 16 >= hhdr->hb_n_marks);
# else
GC_ASSERT(sz * hhdr -> hb_n_marks <= HBLKSIZE);
# endif
# ifdef VALGRIND_TRACKING
/* Call GC_free_profiler_hook() on freed objects so that */
/* a profiling tool could track the allocations. */
{
ptr_t p = hbp -> hb_body;
ptr_t plim = p + HBLKSIZE - sz;
size_t bit_no;
for (bit_no = 0; ADDR_GE(plim, p);
bit_no += MARK_BIT_OFFSET(sz), p += sz) {
if (!mark_bit_from_hdr(hhdr, bit_no))
FREE_PROFILER_HOOK(p);
}
}
# endif
if (report_if_found) {
GC_reclaim_small_nonempty_block(hbp, sz,
TRUE /* report_if_found */);
} else if (empty) {
# ifdef ENABLE_DISCLAIM
if ((hhdr -> hb_flags & HAS_DISCLAIM) != 0) {
GC_disclaim_and_reclaim_or_free_small_block(hbp);
} else
# endif
/* else */ {
GC_bytes_found += (signed_word)HBLKSIZE;
GC_freehblk(hbp);
FREE_PROFILER_HOOK(hbp);
}
} else if (GC_find_leak || !GC_block_nearly_full(hhdr, sz)) {
/* group of smaller objects, enqueue the real work */
struct hblk **rlh = ok -> ok_reclaim_list;
if (rlh != NULL) {
rlh += BYTES_TO_GRANULES(sz);
hhdr -> hb_next = *rlh;
*rlh = hbp;
}
} /* else not worth salvaging. */
/* We used to do the nearly_full check later, but we */
/* already have the right cache context here. Also */
/* doing it here avoids some silly lock contention in */
/* GC_malloc_many. */
if (IS_PTRFREE_SAFE(hhdr)) {
GC_atomic_in_use += (word)sz * hhdr -> hb_n_marks;
} else {
GC_composite_in_use += (word)sz * hhdr -> hb_n_marks;
}
}
}
#if !defined(NO_DEBUGGING)
/* Routines to gather and print heap block info intended for */
/* debugging. Otherwise should be called with the allocator lock */
/* held. */
struct Print_stats
{
size_t number_of_blocks;
size_t total_bytes;
};
EXTERN_C_BEGIN /* to avoid "no previous prototype" clang warning */
unsigned GC_n_set_marks(const hdr *);
EXTERN_C_END
# ifdef USE_MARK_BYTES
/* Return the number of set mark bits in the given header. */
/* Remains externally visible as used by GNU GCJ currently. */
/* There could be a race between GC_clear_hdr_marks and this */
/* function but the latter is for a debug purpose. */
GC_ATTR_NO_SANITIZE_THREAD
unsigned GC_n_set_marks(const hdr *hhdr)
{
unsigned result = 0;
size_t i;
size_t offset = MARK_BIT_OFFSET(hhdr -> hb_sz);
size_t limit = FINAL_MARK_BIT(hhdr -> hb_sz);
for (i = 0; i < limit; i += offset) {
result += (unsigned)(hhdr -> hb_marks[i]);
}
GC_ASSERT(hhdr -> hb_marks[limit]); /* the one set past the end */
return result;
}
# else
/* Number of set bits in a word. Not performance critical. */
static unsigned count_ones(word v)
{
unsigned result = 0;
for (; v > 0; v >>= 1) {
if (v & 1) result++;
}
return result;
}
unsigned GC_n_set_marks(const hdr *hhdr)
{
unsigned result = 0;
size_t i;
# ifdef MARK_BIT_PER_OBJ
size_t n_objs = HBLK_OBJS(hhdr -> hb_sz);
size_t n_mark_words
= divWORDSZ(n_objs > 0 ? n_objs : 1); /* round down */
for (i = 0; i <= n_mark_words; i++) {
result += count_ones(hhdr -> hb_marks[i]);
}
# else
for (i = 0; i < HB_MARKS_SZ; i++) {
result += count_ones(hhdr -> hb_marks[i]);
}
# endif
GC_ASSERT(result > 0);
result--; /* exclude the one bit set past the end */
# ifndef MARK_BIT_PER_OBJ
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) {
size_t lg = BYTES_TO_GRANULES(hhdr -> hb_sz);
/* As mentioned in GC_set_hdr_marks(), all the bits are set */
/* instead of every n-th, thus the result should be adjusted. */
GC_ASSERT((unsigned)lg != 0 && result % lg == 0);
result /= (unsigned)lg;
}
# endif
return result;
}
# endif /* !USE_MARK_BYTES */
GC_API unsigned GC_CALL GC_count_set_marks_in_hblk(const void *p) {
return GC_n_set_marks(HDR(p));
}
STATIC void GC_CALLBACK GC_print_block_descr(struct hblk *h, void *raw_ps)
{
const hdr *hhdr = HDR(h);
size_t sz = hhdr -> hb_sz;
struct Print_stats *ps = (struct Print_stats *)raw_ps;
size_t n_marks = (size_t)GC_n_set_marks(hhdr);
size_t n_objs = HBLK_OBJS(sz);
# ifndef PARALLEL_MARK
GC_ASSERT(hhdr -> hb_n_marks == n_marks);
# endif
# if defined(CPPCHECK)
GC_noop1_ptr(h);
# endif
GC_ASSERT((n_objs > 0 ? n_objs : 1) >= n_marks);
GC_printf("%u,%u,%u,%u\n", hhdr -> hb_obj_kind, (unsigned)sz,
(unsigned)n_marks, (unsigned)n_objs);
ps -> number_of_blocks++;
ps -> total_bytes += (sz + HBLKSIZE-1) & ~(HBLKSIZE-1); /* round up */
}
void GC_print_block_list(void)
{
struct Print_stats pstats;
GC_printf("kind(0=ptrfree/1=normal/2=unc.),"
"obj_sz,#marks_set,#objs_in_block\n");
BZERO(&pstats, sizeof(pstats));
GC_apply_to_all_blocks(GC_print_block_descr, &pstats);
GC_printf("blocks= %lu, total_bytes= %lu\n",
(unsigned long)pstats.number_of_blocks,
(unsigned long)pstats.total_bytes);
if (pstats.total_bytes + GC_large_free_bytes != GC_heapsize)
GC_err_printf("LOST SOME BLOCKS!! Total bytes should be: %lu\n",
(unsigned long)(GC_heapsize - GC_large_free_bytes));
}
GC_API void GC_CALL GC_print_free_list(int k, size_t lg)
{
void *flh_next;
int n;
GC_ASSERT(k < MAXOBJKINDS);
GC_ASSERT(lg <= MAXOBJGRANULES);
flh_next = GC_obj_kinds[k].ok_freelist[lg];
for (n = 0; flh_next != NULL; n++) {
GC_printf("Free object in heap block %p [%d]: %p\n",
(void *)HBLKPTR(flh_next), n, flh_next);
flh_next = obj_link(flh_next);
}
}
#endif /* !NO_DEBUGGING */
/*
* Clear all obj_link pointers in the list of free objects *flp.
* Clear *flp.
* This must be done before dropping a list of free gcj-style objects,
* since may otherwise end up with dangling "descriptor" pointers.
* It may help for other pointer-containing objects.
*/
STATIC void GC_clear_fl_links(void **flp)
{
void *next;
for (next = *flp; next != NULL; next = *flp) {
*flp = NULL;
flp = &obj_link(next);
}
}
/*
* Perform GC_reclaim_block on the entire heap, after first clearing
* small-object free lists (if we are not just looking for leaks).
*/
GC_INNER void GC_start_reclaim(GC_bool report_if_found)
{
int k;
GC_ASSERT(I_HOLD_LOCK());
# if defined(PARALLEL_MARK)
GC_ASSERT(0 == GC_fl_builder_count);
# endif
/* Reset in use counters. GC_reclaim_block recomputes them. */
GC_composite_in_use = 0;
GC_atomic_in_use = 0;
/* Clear reclaim- and free-lists. */
for (k = 0; k < (int)GC_n_kinds; k++) {
struct hblk **rlist = GC_obj_kinds[k].ok_reclaim_list;
GC_bool should_clobber = GC_obj_kinds[k].ok_descriptor != 0;
if (NULL == rlist) continue; /* means this object kind is not used */
if (!report_if_found) {
void **fop;
void **lim = &GC_obj_kinds[k].ok_freelist[MAXOBJGRANULES + 1];
for (fop = GC_obj_kinds[k].ok_freelist;
ADDR_LT((ptr_t)fop, (ptr_t)lim); fop++) {
if (*fop != NULL) {
if (should_clobber) {
GC_clear_fl_links(fop);
} else {
*fop = NULL;
}
}
}
} /* otherwise free-list objects are marked, */
/* and it's safe to leave them. */
BZERO(rlist, (MAXOBJGRANULES + 1) * sizeof(void *));
}
/* Go through all heap blocks (in hblklist) and reclaim unmarked */
/* objects or enqueue the block for later processing. */
GC_apply_to_all_blocks(GC_reclaim_block, (void *)(word)report_if_found);
# ifdef EAGER_SWEEP
/* This is a very stupid thing to do. We make it possible anyway, */
/* so that you can convince yourself that it really is very stupid. */
GC_reclaim_all((GC_stop_func)0, FALSE);
# elif defined(ENABLE_DISCLAIM)
/* However, make sure to clear reclaimable objects of kinds with */
/* unconditional marking enabled before we do any significant */
/* marking work. */
GC_reclaim_unconditionally_marked();
# endif
# if defined(PARALLEL_MARK)
GC_ASSERT(0 == GC_fl_builder_count);
# endif
}
GC_INNER void GC_continue_reclaim(size_t lg, int k)
{
struct hblk *hbp;
struct obj_kind *ok = &GC_obj_kinds[k];
struct hblk **rlh = ok -> ok_reclaim_list;
void **flh;
GC_ASSERT(I_HOLD_LOCK());
if (NULL == rlh)
return; /* No blocks of this kind. */
flh = &(ok -> ok_freelist[lg]);
for (rlh += lg; (hbp = *rlh) != NULL; ) {
const hdr *hhdr = HDR(hbp);
*rlh = hhdr -> hb_next;
GC_reclaim_small_nonempty_block(hbp, hhdr -> hb_sz, FALSE);
if (*flh != NULL)
break; /* the appropriate free list is nonempty */
}
}
/*
* Reclaim all small blocks waiting to be reclaimed.
* Abort and return FALSE when/if (*stop_func)() returns TRUE.
* If this returns TRUE, then it's safe to restart the world
* with incorrectly cleared mark bits.
* If ignore_old is TRUE, then reclaim only blocks that have been
* recently reclaimed, and discard the rest.
* Stop_func may be 0.
*/
GC_INNER GC_bool GC_reclaim_all(GC_stop_func stop_func, GC_bool ignore_old)
{
size_t lg;
int k;
const hdr * hhdr;
struct hblk * hbp;
struct hblk ** rlp;
struct hblk ** rlh;
# ifndef NO_CLOCK
CLOCK_TYPE start_time = CLOCK_TYPE_INITIALIZER;
if (GC_print_stats == VERBOSE)
GET_TIME(start_time);
# endif
GC_ASSERT(I_HOLD_LOCK());
for (k = 0; k < (int)GC_n_kinds; k++) {
rlp = GC_obj_kinds[k].ok_reclaim_list;
if (rlp == 0) continue;
for (lg = 1; lg <= MAXOBJGRANULES; lg++) {
for (rlh = rlp + lg; (hbp = *rlh) != NULL; ) {
if (stop_func != (GC_stop_func)0 && (*stop_func)()) {
return FALSE;
}
hhdr = HDR(hbp);
*rlh = hhdr -> hb_next;
if (!ignore_old
|| (word)(hhdr -> hb_last_reclaimed) == GC_gc_no - 1) {
/* It's likely we'll need it this time, too */
/* It's been touched recently, so this */
/* shouldn't trigger paging. */
GC_reclaim_small_nonempty_block(hbp, hhdr -> hb_sz, FALSE);
}
}
}
}
# ifndef NO_CLOCK
if (GC_print_stats == VERBOSE) {
CLOCK_TYPE done_time;
GET_TIME(done_time);
GC_verbose_log_printf(
"Disposing of reclaim lists took %lu ms %lu ns\n",
MS_TIME_DIFF(done_time, start_time),
NS_FRAC_TIME_DIFF(done_time, start_time));
}
# endif
return TRUE;
}
#if !defined(EAGER_SWEEP) && defined(ENABLE_DISCLAIM)
/* We do an eager sweep on heap blocks where unconditional marking has */
/* been enabled, so that any reclaimable objects have been reclaimed */
/* before we start marking. This is a simplified GC_reclaim_all */
/* restricted to kinds where ok_mark_unconditionally is true. */
STATIC void GC_reclaim_unconditionally_marked(void)
{
int k;
GC_ASSERT(I_HOLD_LOCK());
for (k = 0; k < (int)GC_n_kinds; k++) {
size_t lg;
struct obj_kind *ok = &GC_obj_kinds[k];
struct hblk **rlp = ok -> ok_reclaim_list;
if (NULL == rlp || !(ok -> ok_mark_unconditionally)) continue;
for (lg = 1; lg <= MAXOBJGRANULES; lg++) {
struct hblk **rlh = rlp + lg;
struct hblk *hbp;
while ((hbp = *rlh) != NULL) {
const hdr *hhdr = HDR(hbp);
*rlh = hhdr -> hb_next;
GC_reclaim_small_nonempty_block(hbp, hhdr -> hb_sz, FALSE);
}
}
}
}
#endif /* !EAGER_SWEEP && ENABLE_DISCLAIM */
struct enumerate_reachable_s {
GC_reachable_object_proc proc;
void *client_data;
};
STATIC void GC_CALLBACK GC_do_enumerate_reachable_objects(struct hblk *hbp,
void *ed_ptr)
{
const hdr *hhdr = HDR(hbp);
ptr_t p, plim;
const struct enumerate_reachable_s *ped
= (struct enumerate_reachable_s *)ed_ptr;
size_t sz = hhdr -> hb_sz;
size_t bit_no;
if (GC_block_empty(hhdr)) return;
p = hbp -> hb_body;
if (sz > MAXOBJBYTES) { /* one big object */
plim = p;
} else {
plim = p + HBLKSIZE - sz;
}
/* Go through all objects in the block. */
for (bit_no = 0; ADDR_GE(plim, p); bit_no += MARK_BIT_OFFSET(sz), p += sz) {
if (mark_bit_from_hdr(hhdr, bit_no)) {
ped -> proc(p, sz, ped -> client_data);
}
}
}
GC_API void GC_CALL GC_enumerate_reachable_objects_inner(
GC_reachable_object_proc proc,
void *client_data)
{
struct enumerate_reachable_s ed;
GC_ASSERT(I_HOLD_READER_LOCK());
ed.proc = proc;
ed.client_data = client_data;
GC_apply_to_all_blocks(GC_do_enumerate_reachable_objects, &ed);
}