forked from jxx123/simglucose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_rllab.py
43 lines (37 loc) · 1.11 KB
/
run_rllab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from rllab.algos.ddpg import DDPG
from rllab.envs.normalized_env import normalize
from rllab.exploration_strategies.ou_strategy import OUStrategy
from rllab.policies.deterministic_mlp_policy import DeterministicMLPPolicy
from rllab.q_functions.continuous_mlp_q_function import ContinuousMLPQFunction
from rllab.envs.gym_env import GymEnv
from gym.envs.registration import register
register(
id='simglucose-adolescent2-v0',
entry_point='simglucose.envs:T1DSimEnv',
kwargs={'patient_name': 'adolescent#002'}
)
env = GymEnv('simglucose-adolescent2-v0')
env = normalize(env)
policy = DeterministicMLPPolicy(
env_spec=env.spec,
# The neural network policy should have two hidden layers, each with 32 hidden units.
hidden_sizes=(32, 32)
)
es = OUStrategy(env_spec=env.spec)
qf = ContinuousMLPQFunction(env_spec=env.spec)
algo = DDPG(
env=env,
policy=policy,
es=es,
qf=qf,
batch_size=32,
max_path_length=100,
epoch_length=3,
min_pool_size=10000,
n_epochs=1000,
discount=0.99,
scale_reward=0.01,
qf_learning_rate=1e-3,
policy_learning_rate=1e-4
)
algo.train()