forked from ming024/FastSpeech2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
190 lines (155 loc) · 5.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib
import matplotlib
matplotlib.use("Agg")
from matplotlib import pyplot as plt
from scipy.io import wavfile
import os
import text
import hparams as hp
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_alignment(tier):
sil_phones = ['sil', 'sp', 'spn']
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trimming leading silences
if phones == []:
if p in sil_phones:
continue
else:
start_time = s
if p not in sil_phones:
phones.append(p)
end_time = e
end_idx = len(phones)
else:
phones.append(p)
durations.append(int(np.round(e*hp.sampling_rate/hp.hop_length)-np.round(s*hp.sampling_rate/hp.hop_length)))
# Trimming tailing silences
phones = phones[:end_idx]
durations = durations[:end_idx]
return phones, durations, start_time, end_time
def process_meta(meta_path):
with open(meta_path, "r", encoding="utf-8") as f:
text = []
name = []
for line in f.readlines():
n, t = line.strip('\n').split('|')
name.append(n)
text.append(t)
return name, text
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def plot_data(data, titles=None, filename=None):
fig, axes = plt.subplots(len(data), 1, squeeze=False)
if titles is None:
titles = [None for i in range(len(data))]
def add_axis(fig, old_ax, offset=0):
ax = fig.add_axes(old_ax.get_position(), anchor='W')
ax.set_facecolor("None")
return ax
for i in range(len(data)):
spectrogram, pitch, energy = data[i]
axes[i][0].imshow(spectrogram, origin='lower')
axes[i][0].set_aspect(2.5, adjustable='box')
axes[i][0].set_ylim(0, hp.n_mel_channels)
axes[i][0].set_title(titles[i], fontsize='medium')
axes[i][0].tick_params(labelsize='x-small', left=False, labelleft=False)
axes[i][0].set_anchor('W')
ax1 = add_axis(fig, axes[i][0])
ax1.plot(pitch, color='tomato')
ax1.set_xlim(0, spectrogram.shape[1])
ax1.set_ylim(0, hp.f0_max)
ax1.set_ylabel('F0', color='tomato')
ax1.tick_params(labelsize='x-small', colors='tomato', bottom=False, labelbottom=False)
ax2 = add_axis(fig, axes[i][0], 1.2)
ax2.plot(energy, color='darkviolet')
ax2.set_xlim(0, spectrogram.shape[1])
ax2.set_ylim(hp.energy_min, hp.energy_max)
ax2.set_ylabel('Energy', color='darkviolet')
ax2.yaxis.set_label_position('right')
ax2.tick_params(labelsize='x-small', colors='darkviolet', bottom=False, labelbottom=False, left=False, labelleft=False, right=True, labelright=True)
plt.savefig(filename, dpi=200)
plt.close()
def get_mask_from_lengths(lengths, max_len=None):
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
mask = (ids >= lengths.unsqueeze(1).expand(-1, max_len))
return mask
def get_waveglow():
waveglow = torch.hub.load('nvidia/DeepLearningExamples:torchhub', 'nvidia_waveglow')
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow.eval()
for m in waveglow.modules():
if 'Conv' in str(type(m)):
setattr(m, 'padding_mode', 'zeros')
waveglow.to(device)
return waveglow
def waveglow_infer(mel, waveglow, path):
with torch.no_grad():
wav = waveglow.infer(mel, sigma=1.0) * hp.max_wav_value
wav = wav.squeeze().cpu().numpy()
wav = wav.astype('int16')
wavfile.write(path, hp.sampling_rate, wav)
def melgan_infer(mel, melgan, path):
with torch.no_grad():
wav = melgan.inference(mel).cpu().numpy()
wav = wav.astype('int16')
wavfile.write(path, hp.sampling_rate, wav)
def get_melgan():
melgan = torch.hub.load('seungwonpark/melgan', 'melgan')
melgan.eval()
melgan.to(device)
return melgan
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]),
mode='constant',
constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]),
mode='constant',
constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0)for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len-batch.size(0)), "constant", 0.0)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded