forked from telegramdesktop/tdesktop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsa_public_key.cpp
271 lines (235 loc) · 7.14 KB
/
rsa_public_key.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.
For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "mtproto/rsa_public_key.h"
#include "base/openssl_help.h"
extern "C" {
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/bio.h>
#include <openssl/err.h>
} // extern "C"
namespace MTP {
namespace internal {
namespace {
#if OPENSSL_VERSION_NUMBER < 0x10100000L || (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
// This is a key setter for compatibility with OpenSSL 1.0
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
if ((r->n == nullptr && n == nullptr) || (r->e == nullptr && e == nullptr)) {
return 0;
}
if (n != nullptr) {
BN_free(r->n);
r->n = n;
}
if (e != nullptr) {
BN_free(r->e);
r->e = e;
}
if (d != nullptr) {
BN_free(r->d);
r->d = d;
}
return 1;
}
// This is a key getter for compatibility with OpenSSL 1.0
void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
if (n != nullptr) {
*n = r->n;
}
if (e != nullptr) {
*e = r->e;
}
if (d != nullptr) {
*d = r->d;
}
}
#endif
enum class Format {
RSAPublicKey,
RSA_PUBKEY,
Unknown,
};
Format GuessFormat(bytes::const_span key) {
const auto array = QByteArray::fromRawData(
reinterpret_cast<const char*>(key.data()),
key.size());
if (array.indexOf("BEGIN RSA PUBLIC KEY") >= 0) {
return Format::RSAPublicKey;
} else if (array.indexOf("BEGIN PUBLIC KEY") >= 0) {
return Format::RSA_PUBKEY;
}
return Format::Unknown;
}
RSA *CreateRaw(bytes::const_span key) {
const auto format = GuessFormat(key);
const auto bio = BIO_new_mem_buf(
const_cast<gsl::byte*>(key.data()),
key.size());
switch (format) {
case Format::RSAPublicKey:
return PEM_read_bio_RSAPublicKey(bio, nullptr, nullptr, nullptr);
case Format::RSA_PUBKEY:
return PEM_read_bio_RSA_PUBKEY(bio, nullptr, nullptr, nullptr);
}
Unexpected("format in RSAPublicKey::Private::Create.");
}
} // namespace
class RSAPublicKey::Private {
public:
Private(bytes::const_span key)
: _rsa(CreateRaw(key)) {
if (_rsa) {
computeFingerprint();
}
}
Private(bytes::const_span nBytes, bytes::const_span eBytes)
: _rsa(RSA_new()) {
if (_rsa) {
auto n = openssl::BigNum(nBytes).takeRaw();
auto e = openssl::BigNum(eBytes).takeRaw();
auto valid = (n != nullptr) && (e != nullptr);
// We still pass both values to RSA_set0_key() so that even
// if only one of them is valid RSA would take ownership of it.
if (!RSA_set0_key(_rsa, n, e, nullptr) || !valid) {
RSA_free(base::take(_rsa));
} else {
computeFingerprint();
}
}
}
bytes::vector getN() const {
Expects(isValid());
const BIGNUM *n;
RSA_get0_key(_rsa, &n, nullptr, nullptr);
return toBytes(n);
}
bytes::vector getE() const {
Expects(isValid());
const BIGNUM *e;
RSA_get0_key(_rsa, nullptr, &e, nullptr);
return toBytes(e);
}
uint64 getFingerPrint() const {
return _fingerprint;
}
bool isValid() const {
return _rsa != nullptr;
}
bytes::vector encrypt(bytes::const_span data) const {
Expects(isValid());
constexpr auto kEncryptSize = 256;
auto result = bytes::vector(kEncryptSize, gsl::byte {});
auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kEncryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return {};
} else if (auto zeroBytes = kEncryptSize - res) {
auto resultBytes = gsl::make_span(result);
bytes::move(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
bytes::set_with_const(resultBytes.subspan(0, zeroBytes), gsl::byte {});
}
return result;
}
bytes::vector decrypt(bytes::const_span data) const {
Expects(isValid());
constexpr auto kDecryptSize = 256;
auto result = bytes::vector(kDecryptSize, gsl::byte {});
auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char*>(data.data()), reinterpret_cast<unsigned char*>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kDecryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3").arg(getFingerPrint()).arg(res).arg(ERR_error_string(ERR_get_error(), 0)));
return {};
} else if (auto zeroBytes = kDecryptSize - res) {
auto resultBytes = gsl::make_span(result);
bytes::move(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
bytes::set_with_const(resultBytes.subspan(0, zeroBytes - res), gsl::byte {});
}
return result;
}
bytes::vector encryptOAEPpadding(bytes::const_span data) const {
Expects(isValid());
const auto resultSize = RSA_size(_rsa);
auto result = bytes::vector(resultSize, gsl::byte{});
const auto encryptedSize = RSA_public_encrypt(
data.size(),
reinterpret_cast<const unsigned char*>(data.data()),
reinterpret_cast<unsigned char*>(result.data()),
_rsa,
RSA_PKCS1_OAEP_PADDING);
if (encryptedSize != resultSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, "
"key fp: %1, result: %2, error: %3"
).arg(getFingerPrint()
).arg(encryptedSize
).arg(ERR_error_string(ERR_get_error(), 0)
));
return {};
}
return result;
}
~Private() {
RSA_free(_rsa);
}
private:
void computeFingerprint() {
Expects(isValid());
const BIGNUM *n, *e;
mtpBuffer string;
RSA_get0_key(_rsa, &n, &e, nullptr);
MTP_bytes(toBytes(n)).write(string);
MTP_bytes(toBytes(e)).write(string);
uchar sha1Buffer[20];
_fingerprint = *(uint64*)(hashSha1(&string[0], string.size() * sizeof(mtpPrime), sha1Buffer) + 3);
}
static bytes::vector toBytes(const BIGNUM *number) {
auto size = BN_num_bytes(number);
auto result = bytes::vector(size, gsl::byte {});
BN_bn2bin(number, reinterpret_cast<unsigned char*>(result.data()));
return result;
}
RSA *_rsa = nullptr;
uint64 _fingerprint = 0;
};
RSAPublicKey::RSAPublicKey(bytes::const_span key)
: _private(std::make_shared<Private>(key)) {
}
RSAPublicKey::RSAPublicKey(
bytes::const_span nBytes,
bytes::const_span eBytes)
: _private(std::make_shared<Private>(nBytes, eBytes)) {
}
bool RSAPublicKey::isValid() const {
return _private && _private->isValid();
}
uint64 RSAPublicKey::getFingerPrint() const {
Expects(isValid());
return _private->getFingerPrint();
}
bytes::vector RSAPublicKey::getN() const {
Expects(isValid());
return _private->getN();
}
bytes::vector RSAPublicKey::getE() const {
Expects(isValid());
return _private->getE();
}
bytes::vector RSAPublicKey::encrypt(bytes::const_span data) const {
Expects(isValid());
return _private->encrypt(data);
}
bytes::vector RSAPublicKey::decrypt(bytes::const_span data) const {
Expects(isValid());
return _private->decrypt(data);
}
bytes::vector RSAPublicKey::encryptOAEPpadding(
bytes::const_span data) const {
return _private->encryptOAEPpadding(data);
}
} // namespace internal
} // namespace MTP