forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util_test.py
70 lines (60 loc) · 2.56 KB
/
util_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import jax
import jax.numpy as np
from jax import api, lax
from jax import linear_util as lu
from jax import test_util as jtu
from jax import tree_util
from jax.config import config
config.parse_flags_with_absl()
FLAGS = config.FLAGS
class UtilTest(jtu.JaxTestCase):
def test_wrapped_fun_transforms(self):
"""Test a combination of transforms."""
def f(*args, **kwargs):
"""The function to be transformed.
Scales the positional arguments by a factor.
Takes only one keyword argument, the factor to scale by."""
factor = kwargs.pop('factor', 2) # For PY2
assert not kwargs
return tuple(a * factor for a in args)
@lu.transformation_with_aux
def kw_to_positional(factor, *args, **kwargs):
"""A transformation with auxiliary output.
Turns all keyword parameters into positional ones.
On entry, append the values of the keyword arguments to the positional
arguments. On exit, take a list of results and recreate a dictionary
from the tail of the results. The auxiliary output is the list of
keyword keys.
"""
kwargs_keys = kwargs.keys()
new_args = tuple(kwargs[k] for k in kwargs_keys)
new_kwargs = dict(factor=factor)
results = yield args + new_args, new_kwargs # Yield transformed (args, kwargs)
# Assume results correspond 1:1 to the args + new_args
assert len(results) == len(args) + len(new_args)
aux_output = len(new_args)
yield (results[0:len(args)],
dict(zip(kwargs_keys, results[len(args):]))), aux_output
wf = lu.wrap_init(f) # Wraps `f` as a `WrappedFun`.
wf, out_thunk = kw_to_positional(wf, 2)
# Call the transformed function.
scaled_positional, scaled_kwargs = wf.call_wrapped(1, 2, three=3, four=4)
self.assertEqual((2, 4), scaled_positional)
self.assertEqual(dict(three=6, four=8), scaled_kwargs)
self.assertEqual(2, out_thunk())