forked from sambanova/ai-starter-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_custom_dataset.sh
45 lines (43 loc) · 1.56 KB
/
run_custom_dataset.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/bin/bash
# run_custom_dataset.sh
python src/evaluator.py \
--mode custom \
--model-name "llama3-405b" \
--results-dir "./data/results/llmperf" \
--num-workers 1 \
--timeout 600 \
--input-file-path "<CUSTOM DATASET PATH HERE>" \
--save-llm-responses False \
--sampling-params '{"max_tokens": 256}' \
--llm-api "sncloud"
# Notes:
# 1. Replace <CUSTOM DATASET PATH HERE> with the path to your custom dataset.
#
# 2. For CoE Models, make sure to include the prefix "COE/" before the expert name.
# For example:
# --model-name "COE/llama-2-7b-chat-hf"
# OR
# --model-name "COE/llama-2-13b-chat-hf"
# OR
# --model-name "COE/Mistral-7B-Instruct-v0.2"
# OR
# --model-name "COE/Meta-Llama-3-8B-Instruct"
#
# 3. For Non-CoE models, use the model name directly and remember to update and source the `.env` file for a new endpoint.
# For example:
# --model-name "llama-2-7b-chat-hf"
# OR
# --model-name "llama-2-13b-chat-hf"
# OR
# --model-name "Mistral-7B-Instruct-v0.2"
# OR
# --model-name "Meta-Llama-3-8B-Instruct"
#
# 4. For SambaNovaCloud endpoints, change the llm-api parameter to "sncloud" and use the model name directly.
# For example:
# --model-name "llama3-8b"
#
# 5. You can modify the number of maximum tokens depending on the LLM endpoint type.
# If it's "sambastudio": add or modify in the `--sampling-params` dictionary the `max_tokens_to_generate` key and a value
# If it's "sncloud": add or modify in the `--sampling-params` dictionary the `max_tokens` key and a value
#