-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbenchmark.1d.js
137 lines (116 loc) · 2.88 KB
/
benchmark.1d.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var bench = require( '@stdlib/bench' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var pow = require( '@stdlib/math/base/special/pow' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var shape2strides = require( './../../base/shape2strides' );
var ndarray = require( './../../ctor' );
var pkg = require( './../package.json' ).name;
var includes = require( './../lib' );
// VARIABLES //
var types = [ 'float64' ];
var orders = [ 'row-major', 'column-major' ];
// FUNCTIONS //
/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - ndarray length
* @param {NonNegativeIntegerArray} shape - ndarray shape
* @param {string} xtype - ndarray data type
* @param {string} order - memory layout
* @param {NonNegativeIntegerArray} dims - list of dimensions to reduce
* @returns {Function} benchmark function
*/
function createBenchmark( len, shape, xtype, order, dims ) {
var x;
x = discreteUniform( len, 1, 100 );
x = new ndarray( xtype, x, shape, shape2strides( shape, order ), 0, order );
return benchmark;
/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var out;
var i;
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
out = includes( x, 101, {
'dims': dims
});
if ( typeof out !== 'object' ) {
b.fail( 'should return an ndarray' );
}
}
b.toc();
if ( !isndarrayLike( out ) ) {
b.fail( 'should return an ndarray' );
}
b.pass( 'benchmark finished' );
b.end();
}
}
// MAIN //
/**
* Main execution sequence.
*
* @private
*/
function main() {
var dims;
var len;
var min;
var max;
var ord;
var sh;
var t1;
var f;
var i;
var j;
var k;
var n;
var d;
min = 1; // 10^min
max = 6; // 10^max
d = [
[ 0 ],
[]
];
for ( n = 0; n < d.length; n++ ) {
dims = d[ n ];
for ( k = 0; k < orders.length; k++ ) {
ord = orders[ k ];
for ( j = 0; j < types.length; j++ ) {
t1 = types[ j ];
for ( i = min; i <= max; i++ ) {
len = pow( 10, i );
sh = [ len ];
f = createBenchmark( len, sh, t1, ord, dims );
bench( pkg+':ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+ord+',xtype='+t1+',dims=['+dims.join(',' )+']', f );
}
}
}
}
}
main();