forked from DLR-RM/stable-baselines3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vec_normalize.py
456 lines (360 loc) · 15.8 KB
/
test_vec_normalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import operator
import gym
import numpy as np
import pytest
from gym import spaces
from stable_baselines3 import SAC, TD3, HerReplayBuffer
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.running_mean_std import RunningMeanStd
from stable_baselines3.common.vec_env import (
DummyVecEnv,
VecFrameStack,
VecNormalize,
sync_envs_normalization,
unwrap_vec_normalize,
)
ENV_ID = "Pendulum-v1"
class DummyRewardEnv(gym.Env):
metadata = {}
def __init__(self, return_reward_idx=0):
self.action_space = spaces.Discrete(2)
self.observation_space = spaces.Box(low=np.array([-1.0]), high=np.array([1.0]))
self.returned_rewards = [0, 1, 3, 4]
self.return_reward_idx = return_reward_idx
self.t = self.return_reward_idx
def step(self, action):
self.t += 1
index = (self.t + self.return_reward_idx) % len(self.returned_rewards)
returned_value = self.returned_rewards[index]
return np.array([returned_value]), returned_value, self.t == len(self.returned_rewards), {}
def reset(self):
self.t = 0
return np.array([self.returned_rewards[self.return_reward_idx]])
class DummyDictEnv(gym.Env):
"""
Dummy gym goal env for testing purposes
"""
def __init__(self):
super().__init__()
self.observation_space = spaces.Dict(
{
"observation": spaces.Box(low=-20.0, high=20.0, shape=(4,), dtype=np.float32),
"achieved_goal": spaces.Box(low=-20.0, high=20.0, shape=(4,), dtype=np.float32),
"desired_goal": spaces.Box(low=-20.0, high=20.0, shape=(4,), dtype=np.float32),
}
)
self.action_space = spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32)
def reset(self):
return self.observation_space.sample()
def step(self, action):
obs = self.observation_space.sample()
reward = self.compute_reward(obs["achieved_goal"], obs["desired_goal"], {})
done = np.random.rand() > 0.8
return obs, reward, done, {}
def compute_reward(self, achieved_goal: np.ndarray, desired_goal: np.ndarray, _info) -> np.float32:
distance = np.linalg.norm(achieved_goal - desired_goal, axis=-1)
return -(distance > 0).astype(np.float32)
class DummyMixedDictEnv(gym.Env):
"""
Dummy mixed gym env for testing purposes
"""
def __init__(self):
super().__init__()
self.observation_space = spaces.Dict(
{
"obs1": spaces.Box(low=-20.0, high=20.0, shape=(4,), dtype=np.float32),
"obs2": spaces.Discrete(1),
"obs3": spaces.Box(low=-20.0, high=20.0, shape=(4,), dtype=np.float32),
}
)
self.action_space = spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32)
def reset(self):
return self.observation_space.sample()
def step(self, action):
obs = self.observation_space.sample()
done = np.random.rand() > 0.8
return obs, 0.0, done, {}
def allclose(obs_1, obs_2):
"""
Generalized np.allclose() to work with dict spaces.
"""
if isinstance(obs_1, dict):
all_close = True
for key in obs_1.keys():
if not np.allclose(obs_1[key], obs_2[key]):
all_close = False
break
return all_close
return np.allclose(obs_1, obs_2)
def make_env():
return Monitor(gym.make(ENV_ID))
def make_dict_env():
return Monitor(DummyDictEnv())
def check_rms_equal(rmsa, rmsb):
if isinstance(rmsa, dict):
for key in rmsa.keys():
assert np.all(rmsa[key].mean == rmsb[key].mean)
assert np.all(rmsa[key].var == rmsb[key].var)
assert np.all(rmsa[key].count == rmsb[key].count)
else:
assert np.all(rmsa.mean == rmsb.mean)
assert np.all(rmsa.var == rmsb.var)
assert np.all(rmsa.count == rmsb.count)
def check_vec_norm_equal(norma, normb):
assert norma.observation_space == normb.observation_space
assert norma.action_space == normb.action_space
assert norma.num_envs == normb.num_envs
check_rms_equal(norma.obs_rms, normb.obs_rms)
check_rms_equal(norma.ret_rms, normb.ret_rms)
assert norma.clip_obs == normb.clip_obs
assert norma.clip_reward == normb.clip_reward
assert norma.norm_obs == normb.norm_obs
assert norma.norm_reward == normb.norm_reward
assert np.all(norma.returns == normb.returns)
assert norma.gamma == normb.gamma
assert norma.epsilon == normb.epsilon
assert norma.training == normb.training
def _make_warmstart(env_fn, **kwargs):
"""Warm-start VecNormalize by stepping through 100 actions."""
venv = DummyVecEnv([env_fn])
venv = VecNormalize(venv, **kwargs)
venv.reset()
venv.get_original_obs()
for _ in range(100):
actions = [venv.action_space.sample()]
venv.step(actions)
return venv
def _make_warmstart_cliffwalking(**kwargs):
"""Warm-start VecNormalize by stepping through CliffWalking"""
return _make_warmstart(lambda: gym.make("CliffWalking-v0"), **kwargs)
def _make_warmstart_cartpole():
"""Warm-start VecNormalize by stepping through CartPole"""
return _make_warmstart(lambda: gym.make("CartPole-v1"))
def _make_warmstart_dict_env(**kwargs):
"""Warm-start VecNormalize by stepping through DummyDictEnv"""
return _make_warmstart(make_dict_env, **kwargs)
def test_runningmeanstd():
"""Test RunningMeanStd object"""
for (x_1, x_2, x_3) in [
(np.random.randn(3), np.random.randn(4), np.random.randn(5)),
(np.random.randn(3, 2), np.random.randn(4, 2), np.random.randn(5, 2)),
]:
rms = RunningMeanStd(epsilon=0.0, shape=x_1.shape[1:])
x_cat = np.concatenate([x_1, x_2, x_3], axis=0)
moments_1 = [x_cat.mean(axis=0), x_cat.var(axis=0)]
rms.update(x_1)
rms.update(x_2)
rms.update(x_3)
moments_2 = [rms.mean, rms.var]
assert np.allclose(moments_1, moments_2)
def test_combining_stats():
np.random.seed(4)
for shape in [(1,), (3,), (3, 4)]:
values = []
rms_1 = RunningMeanStd(shape=shape)
rms_2 = RunningMeanStd(shape=shape)
rms_3 = RunningMeanStd(shape=shape)
for _ in range(15):
value = np.random.randn(*shape)
rms_1.update(value)
rms_3.update(value)
values.append(value)
for _ in range(19):
# Shift the values
value = np.random.randn(*shape) + 1.0
rms_2.update(value)
rms_3.update(value)
values.append(value)
rms_1.combine(rms_2)
assert np.allclose(rms_3.mean, rms_1.mean)
assert np.allclose(rms_3.var, rms_1.var)
rms_4 = rms_3.copy()
assert np.allclose(rms_4.mean, rms_3.mean)
assert np.allclose(rms_4.var, rms_3.var)
assert np.allclose(rms_4.count, rms_3.count)
assert id(rms_4.mean) != id(rms_3.mean)
assert id(rms_4.var) != id(rms_3.var)
x_cat = np.concatenate(values, axis=0)
assert np.allclose(x_cat.mean(axis=0), rms_4.mean)
assert np.allclose(x_cat.var(axis=0), rms_4.var)
def test_obs_rms_vec_normalize():
env_fns = [lambda: DummyRewardEnv(0), lambda: DummyRewardEnv(1)]
env = DummyVecEnv(env_fns)
env = VecNormalize(env)
env.reset()
assert np.allclose(env.obs_rms.mean, 0.5, atol=1e-4)
assert np.allclose(env.ret_rms.mean, 0.0, atol=1e-4)
env.step([env.action_space.sample() for _ in range(len(env_fns))])
assert np.allclose(env.obs_rms.mean, 1.25, atol=1e-4)
assert np.allclose(env.ret_rms.mean, 2, atol=1e-4)
# Check convergence to true mean
for _ in range(3000):
env.step([env.action_space.sample() for _ in range(len(env_fns))])
assert np.allclose(env.obs_rms.mean, 2.0, atol=1e-3)
assert np.allclose(env.ret_rms.mean, 5.688, atol=1e-3)
@pytest.mark.parametrize("make_env", [make_env, make_dict_env])
def test_vec_env(tmp_path, make_env):
"""Test VecNormalize Object"""
clip_obs = 0.5
clip_reward = 5.0
orig_venv = DummyVecEnv([make_env])
norm_venv = VecNormalize(orig_venv, norm_obs=True, norm_reward=True, clip_obs=clip_obs, clip_reward=clip_reward)
_, done = norm_venv.reset(), [False]
while not done[0]:
actions = [norm_venv.action_space.sample()]
obs, rew, done, _ = norm_venv.step(actions)
if isinstance(obs, dict):
for key in obs.keys():
assert np.max(np.abs(obs[key])) <= clip_obs
else:
assert np.max(np.abs(obs)) <= clip_obs
assert np.max(np.abs(rew)) <= clip_reward
path = tmp_path / "vec_normalize"
norm_venv.save(path)
deserialized = VecNormalize.load(path, venv=orig_venv)
check_vec_norm_equal(norm_venv, deserialized)
def test_get_original():
venv = _make_warmstart_cartpole()
for _ in range(3):
actions = [venv.action_space.sample()]
obs, rewards, _, _ = venv.step(actions)
obs = obs[0]
orig_obs = venv.get_original_obs()[0]
rewards = rewards[0]
orig_rewards = venv.get_original_reward()[0]
assert np.all(orig_rewards == 1)
assert orig_obs.shape == obs.shape
assert orig_rewards.dtype == rewards.dtype
assert not np.array_equal(orig_obs, obs)
assert not np.array_equal(orig_rewards, rewards)
np.testing.assert_allclose(venv.normalize_obs(orig_obs), obs)
np.testing.assert_allclose(venv.normalize_reward(orig_rewards), rewards)
def test_get_original_dict():
venv = _make_warmstart_dict_env()
for _ in range(3):
actions = [venv.action_space.sample()]
obs, rewards, _, _ = venv.step(actions)
# obs = obs[0]
orig_obs = venv.get_original_obs()
rewards = rewards[0]
orig_rewards = venv.get_original_reward()[0]
for key in orig_obs.keys():
assert orig_obs[key].shape == obs[key].shape
assert orig_rewards.dtype == rewards.dtype
assert not allclose(orig_obs, obs)
assert not np.array_equal(orig_rewards, rewards)
assert allclose(venv.normalize_obs(orig_obs), obs)
np.testing.assert_allclose(venv.normalize_reward(orig_rewards), rewards)
def test_normalize_external():
venv = _make_warmstart_cartpole()
rewards = np.array([1, 1])
norm_rewards = venv.normalize_reward(rewards)
assert norm_rewards.shape == rewards.shape
# Episode return is almost always >= 1 in CartPole. So reward should shrink.
assert np.all(norm_rewards < 1)
def test_normalize_dict_selected_keys():
venv = _make_warmstart_dict_env(norm_obs=True, norm_obs_keys=["observation"])
for _ in range(3):
actions = [venv.action_space.sample()]
obs, rewards, _, _ = venv.step(actions)
orig_obs = venv.get_original_obs()
# "observation" is expected to be normalized
np.testing.assert_array_compare(operator.__ne__, obs["observation"], orig_obs["observation"])
assert allclose(venv.normalize_obs(orig_obs), obs)
# other keys are expected to be presented "as is"
np.testing.assert_array_equal(obs["achieved_goal"], orig_obs["achieved_goal"])
@pytest.mark.parametrize("model_class", [SAC, TD3, HerReplayBuffer])
@pytest.mark.parametrize("online_sampling", [False, True])
def test_offpolicy_normalization(model_class, online_sampling):
if online_sampling and model_class != HerReplayBuffer:
pytest.skip()
make_env_ = make_dict_env if model_class == HerReplayBuffer else make_env
env = DummyVecEnv([make_env_])
env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.0, clip_reward=10.0)
eval_env = DummyVecEnv([make_env_])
eval_env = VecNormalize(eval_env, training=False, norm_obs=True, norm_reward=False, clip_obs=10.0, clip_reward=10.0)
if model_class == HerReplayBuffer:
model = SAC(
"MultiInputPolicy",
env,
verbose=1,
learning_starts=100,
policy_kwargs=dict(net_arch=[64]),
replay_buffer_kwargs=dict(
max_episode_length=100,
online_sampling=online_sampling,
n_sampled_goal=2,
),
replay_buffer_class=HerReplayBuffer,
seed=2,
)
else:
model = model_class("MlpPolicy", env, verbose=1, learning_starts=100, policy_kwargs=dict(net_arch=[64]))
# Check that VecNormalize object is correctly updated
assert model.get_vec_normalize_env() is env
model.set_env(eval_env)
assert model.get_vec_normalize_env() is eval_env
model.learn(total_timesteps=10)
model.set_env(env)
model.learn(total_timesteps=150)
# Check getter
assert isinstance(model.get_vec_normalize_env(), VecNormalize)
@pytest.mark.parametrize("make_env", [make_env, make_dict_env])
def test_sync_vec_normalize(make_env):
original_env = DummyVecEnv([make_env])
assert unwrap_vec_normalize(original_env) is None
env = VecNormalize(original_env, norm_obs=True, norm_reward=True, clip_obs=100.0, clip_reward=100.0)
assert isinstance(unwrap_vec_normalize(env), VecNormalize)
if not isinstance(env.observation_space, spaces.Dict):
env = VecFrameStack(env, 1)
assert isinstance(unwrap_vec_normalize(env), VecNormalize)
eval_env = DummyVecEnv([make_env])
eval_env = VecNormalize(eval_env, training=False, norm_obs=True, norm_reward=True, clip_obs=100.0, clip_reward=100.0)
if not isinstance(env.observation_space, spaces.Dict):
eval_env = VecFrameStack(eval_env, 1)
env.seed(0)
env.action_space.seed(0)
env.reset()
# Initialize running mean
latest_reward = None
for _ in range(100):
_, latest_reward, _, _ = env.step([env.action_space.sample()])
# Check that unnormalized reward is same as original reward
original_latest_reward = env.get_original_reward()
assert np.allclose(original_latest_reward, env.unnormalize_reward(latest_reward))
obs = env.reset()
dummy_rewards = np.random.rand(10)
original_obs = env.get_original_obs()
# Check that unnormalization works
assert allclose(original_obs, env.unnormalize_obs(obs))
# Normalization must be different (between different environments)
assert not allclose(obs, eval_env.normalize_obs(original_obs))
# Test syncing of parameters
sync_envs_normalization(env, eval_env)
# Now they must be synced
assert allclose(obs, eval_env.normalize_obs(original_obs))
assert allclose(env.normalize_reward(dummy_rewards), eval_env.normalize_reward(dummy_rewards))
# Check synchronization when only reward is normalized
env = VecNormalize(original_env, norm_obs=False, norm_reward=True, clip_reward=100.0)
eval_env = DummyVecEnv([make_env])
eval_env = VecNormalize(eval_env, training=False, norm_obs=False, norm_reward=False)
env.reset()
env.step([env.action_space.sample()])
assert not np.allclose(env.ret_rms.mean, eval_env.ret_rms.mean)
sync_envs_normalization(env, eval_env)
assert np.allclose(env.ret_rms.mean, eval_env.ret_rms.mean)
assert np.allclose(env.ret_rms.var, eval_env.ret_rms.var)
def test_discrete_obs():
with pytest.raises(ValueError, match=".*only supports.*"):
_make_warmstart_cliffwalking()
# Smoke test that it runs with norm_obs False
_make_warmstart_cliffwalking(norm_obs=False)
def test_non_dict_obs_keys():
with pytest.raises(ValueError, match=".*is applicable only.*"):
_make_warmstart(lambda: DummyRewardEnv(), norm_obs_keys=["key"])
with pytest.raises(ValueError, match=".* explicitely pass the observation keys.*"):
_make_warmstart(lambda: DummyMixedDictEnv())
# Ignore Discrete observation key
_make_warmstart(lambda: DummyMixedDictEnv(), norm_obs_keys=["obs1", "obs3"])
# Test dict obs with norm_obs set to False
_make_warmstart(lambda: DummyMixedDictEnv(), norm_obs=False)