In this section a few examples are put together. All of these examples work for several models, making use of the very similar API between the different models.
Important
To run the latest versions of the examples, you have to install from source and install some specific requirements for the examples.
Execute the following steps in a new virtual environment:
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
pip install -r ./examples/requirements.txt
Section | Description |
---|---|
TensorFlow 2.0 models on GLUE | Examples running BERT TensorFlow 2.0 model on the GLUE tasks. |
Language Model fine-tuning | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
Language Generation | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
GLUE | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
SQuAD | Using BERT/RoBERTa/XLNet/XLM for question answering, examples with distributed training. |
Multiple Choice | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks. |
Named Entity Recognition | Using BERT for Named Entity Recognition (NER) on the CoNLL 2003 dataset, examples with distributed training. |
XNLI | Examples running BERT/XLM on the XNLI benchmark. |
Based on the script run_tf_glue.py
.
Fine-tuning the library TensorFlow 2.0 Bert model for sequence classification on the MRPC task of the GLUE benchmark: General Language Understanding Evaluation.
This script has an option for mixed precision (Automatic Mixed Precision / AMP) to run models on Tensor Cores (NVIDIA Volta/Turing GPUs) and future hardware and an option for XLA, which uses the XLA compiler to reduce model runtime.
Options are toggled using USE_XLA
or USE_AMP
variables in the script.
These options and the below benchmark are provided by @tlkh.
Quick benchmarks from the script (no other modifications):
GPU | Mode | Time (2nd epoch) | Val Acc (3 runs) |
---|---|---|---|
Titan V | FP32 | 41s | 0.8438/0.8281/0.8333 |
Titan V | AMP | 26s | 0.8281/0.8568/0.8411 |
V100 | FP32 | 35s | 0.8646/0.8359/0.8464 |
V100 | AMP | 22s | 0.8646/0.8385/0.8411 |
1080 Ti | FP32 | 55s | - |
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
Based on the script run_lm_finetuning.py
.
Fine-tuning the library models for language modeling on a text dataset for GPT, GPT-2, BERT and RoBERTa (DistilBERT to be added soon). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss.
Before running the following example, you should get a file that contains text on which the language model will be fine-tuned. A good example of such text is the WikiText-2 dataset.
We will refer to two different files: $TRAIN_FILE
, which contains text for training, and $TEST_FILE
, which contains
text that will be used for evaluation.
The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before the tokenization). The loss here is that of causal language modeling.
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
python run_lm_finetuning.py \
--output_dir=output \
--model_type=gpt2 \
--model_name_or_path=gpt2 \
--do_train \
--train_data_file=$TRAIN_FILE \
--do_eval \
--eval_data_file=$TEST_FILE
This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches a score of ~20 perplexity once fine-tuned on the dataset.
The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their pre-training: masked language modeling.
In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge slightly slower (over-fitting takes more epochs).
We use the --mlm
flag so that the script may change its loss function.
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
python run_lm_finetuning.py \
--output_dir=output \
--model_type=roberta \
--model_name_or_path=roberta-base \
--do_train \
--train_data_file=$TRAIN_FILE \
--do_eval \
--eval_data_file=$TEST_FILE \
--mlm
Based on the script run_generation.py
.
Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL, XLNet, CTRL. A similar script is used for our official demo Write With Transfomer, where you can try out the different models available in the library.
Example usage:
python run_generation.py \
--model_type=gpt2 \
--model_name_or_path=gpt2
Based on the script run_glue.py
.
Fine-tuning the library models for sequence classification on the GLUE benchmark: General Language Understanding Evaluation. This script can fine-tune the following models: BERT, XLM, XLNet and RoBERTa.
GLUE is made up of a total of 9 different tasks. We get the following results on the dev set of the benchmark with an
uncased BERT base model (the checkpoint bert-base-uncased
). All experiments ran on 8 V100 GPUs with a total train
batch size of 24. Some of these tasks have a small dataset and training can lead to high variance in the results
between different runs. We report the median on 5 runs (with different seeds) for each of the metrics.
Task | Metric | Result |
---|---|---|
CoLA | Matthew's corr | 48.87 |
SST-2 | Accuracy | 91.74 |
MRPC | F1/Accuracy | 90.70/86.27 |
STS-B | Person/Spearman corr. | 91.39/91.04 |
QQP | Accuracy/F1 | 90.79/87.66 |
MNLI | Matched acc./Mismatched acc. | 83.70/84.83 |
QNLI | Accuracy | 89.31 |
RTE | Accuracy | 71.43 |
WNLI | Accuracy | 43.66 |
Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the website. For QQP and WNLI, please refer to FAQ #12 on the webite.
Before running anyone of these GLUE tasks you should download the
GLUE data by running
this script
and unpack it to some directory $GLUE_DIR
.
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/$TASK_NAME \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/$TASK_NAME/
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
The dev set results will be present within the text file eval_results.txt
in the specified output_dir.
In case of MNLI, since there are two separate dev sets (matched and mismatched), there will be a separate
output folder called /tmp/MNLI-MM/
in addition to /tmp/MNLI/
.
The code has not been tested with half-precision training with apex on any GLUE task apart from MRPC, MNLI, CoLA, SST-2. The following section provides details on how to run half-precision training with MRPC. With that being said, there shouldn’t be any issues in running half-precision training with the remaining GLUE tasks as well, since the data processor for each task inherits from the base class DataProcessor.
The following examples fine-tune BERT on the Microsoft Research Paraphrase Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed.
Before running anyone of these GLUE tasks you should download the
GLUE data by running
this script
and unpack it to some directory $GLUE_DIR
.
export GLUE_DIR=/path/to/glue
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/
Our test ran on a few seeds with the original implementation hyper- parameters gave evaluation results between 84% and 88%.
Using Apex and 16 bit precision, the fine-tuning on MRPC only takes 27 seconds. First install apex, then run the following example:
export GLUE_DIR=/path/to/glue
python run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/ \
--fp16
Here is an example using distributed training on 8 V100 GPUs. The model used is the BERT whole-word-masking and it reaches F1 > 92 on MRPC.
export GLUE_DIR=/path/to/glue
python -m torch.distributed.launch \
--nproc_per_node 8 run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/
Training with these hyper-parameters gave us the following results:
acc = 0.8823529411764706
acc_and_f1 = 0.901702786377709
eval_loss = 0.3418912578906332
f1 = 0.9210526315789473
global_step = 174
loss = 0.07231863956341798
The following example uses the BERT-large, uncased, whole-word-masking model and fine-tunes it on the MNLI task.
export GLUE_DIR=/path/to/glue
python -m torch.distributed.launch \
--nproc_per_node 8 run_glue.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--task_name mnli \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MNLI/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir output_dir \
The results are the following:
***** Eval results *****
acc = 0.8679706601466992
eval_loss = 0.4911287787382479
global_step = 18408
loss = 0.04755385363816904
***** Eval results *****
acc = 0.8747965825874695
eval_loss = 0.45516540421714036
global_step = 18408
loss = 0.04755385363816904
Based on the script run_multiple_choice.py
.
Download swag data
#training on 4 tesla V100(16GB) GPUS
export SWAG_DIR=/path/to/swag_data_dir
python ./examples/run_multiple_choice.py \
--model_type roberta \
--task_name swag \
--model_name_or_path roberta-base \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $SWAG_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir models_bert/swag_base \
--per_gpu_eval_batch_size=16 \
--per_gpu_train_batch_size=16 \
--gradient_accumulation_steps 2 \
--overwrite_output
Training with the defined hyper-parameters yields the following results:
***** Eval results *****
eval_acc = 0.8338998300509847
eval_loss = 0.44457291918821606
Based on the script run_squad.py
.
This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a $SQUAD_DIR directory.
And for SQuAD2.0, you need to download:
export SQUAD_DIR=/path/to/SQUAD
python run_squad.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--do_lower_case \
--train_file $SQUAD_DIR/train-v1.1.json \
--predict_file $SQUAD_DIR/dev-v1.1.json \
--per_gpu_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2.0 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/debug_squad/
Training with the previously defined hyper-parameters yields the following results:
f1 = 88.52
exact_match = 81.22
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.0:
python -m torch.distributed.launch --nproc_per_node=8 run_squad.py \
--model_type bert \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--do_lower_case \
--train_file $SQUAD_DIR/train-v1.1.json \
--predict_file $SQUAD_DIR/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ../models/wwm_uncased_finetuned_squad/ \
--per_gpu_train_batch_size 24 \
--gradient_accumulation_steps 12
Training with the previously defined hyper-parameters yields the following results:
f1 = 93.15
exact_match = 86.91
This fine-tuned model is available as a checkpoint under the reference
bert-large-uncased-whole-word-masking-finetuned-squad
.
This example code fine-tunes XLNet on both SQuAD1.0 and SQuAD2.0 dataset. See above to download the data for SQuAD .
export SQUAD_DIR=/path/to/SQUAD
python /data/home/hlu/transformers/examples/run_squad.py \
--model_type xlnet \
--model_name_or_path xlnet-large-cased \
--do_train \
--do_eval \
--do_lower_case \
--train_file /data/home/hlu/notebooks/NLP/examples/question_answering/train-v1.1.json \
--predict_file /data/home/hlu/notebooks/NLP/examples/question_answering/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./wwm_cased_finetuned_squad/ \
--per_gpu_eval_batch_size=4 \
--per_gpu_train_batch_size=4 \
--save_steps 5000
export SQUAD_DIR=/path/to/SQUAD
python run_squad.py \
--model_type xlnet \
--model_name_or_path xlnet-large-cased \
--do_train \
--do_eval \
--version_2_with_negative \
--train_file $SQUAD_DIR/train-v2.0.json \
--predict_file $SQUAD_DIR/dev-v2.0.json \
--learning_rate 3e-5 \
--num_train_epochs 4 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./wwm_cased_finetuned_squad/ \
--per_gpu_eval_batch_size=2 \
--per_gpu_train_batch_size=2 \
--save_steps 5000
Larger batch size may improve the performance while costing more memory.
{
"exact": 85.45884578997162,
"f1": 92.5974600601065,
"total": 10570,
"HasAns_exact": 85.45884578997162,
"HasAns_f1": 92.59746006010651,
"HasAns_total": 10570
}
{
"exact": 80.4177545691906,
"f1": 84.07154997729623,
"total": 11873,
"HasAns_exact": 76.73751686909581,
"HasAns_f1": 84.05558584352873,
"HasAns_total": 5928,
"NoAns_exact": 84.0874684608915,
"NoAns_f1": 84.0874684608915,
"NoAns_total": 5945
}
Based on the scripts run_ner.py
for Pytorch and
run_tf_ner.py
for Tensorflow 2.
This example fine-tune Bert Multilingual on GermEval 2014 (German NER).
Details and results for the fine-tuning provided by @stefan-it.
Data can be obtained from the GermEval 2014 shared task page.
Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted:
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-train.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-dev.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-test.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
The GermEval 2014 dataset contains some strange "control character" tokens like '\x96', '\u200e', '\x95', '\xad' or '\x80'
. One problem with these tokens is, that BertTokenizer
returns an empty token for them, resulting in misaligned InputExample
s. I wrote a script that a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached).
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
Let's define some variables that we need for further pre-processing steps and training the model:
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
Run the pre-processing script on training, dev and test datasets:
python3 preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
python3 preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
python3 preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used:
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
Additional environment variables must be set:
export OUTPUT_DIR=germeval-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
To start training, just run:
python3 run_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_gpu_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
If your GPU supports half-precision training, just add the --fp16
flag. After training, the model will be both evaluated on development and test datasets.
Evaluation on development dataset outputs the following for our example:
10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146
10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543
10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111
10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806
On the test dataset the following results could be achieved:
10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803
10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782
10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
Here is a small comparison between BERT (large, cased), RoBERTa (large, cased) and DistilBERT (base, uncased) with the same hyperparameters as specified in the example documentation (one run):
Model | F-Score Dev | F-Score Test |
---|---|---|
bert-large-cased |
95.59 | 91.70 |
roberta-large |
95.96 | 91.87 |
distilbert-base-uncased |
94.34 | 90.32 |
To start training, just run:
python3 run_tf_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_device_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
Such as the Pytorch version, if your GPU supports half-precision training, just add the --fp16
flag. After training, the model will be both evaluated on development and test datasets.
Evaluation on development dataset outputs the following for our example:
precision recall f1-score support
LOCderiv 0.7619 0.6154 0.6809 52
PERpart 0.8724 0.8997 0.8858 4057
OTHpart 0.9360 0.9466 0.9413 711
ORGpart 0.7015 0.6989 0.7002 269
LOCpart 0.7668 0.8488 0.8057 496
LOC 0.8745 0.9191 0.8963 235
ORGderiv 0.7723 0.8571 0.8125 91
OTHderiv 0.4800 0.6667 0.5581 18
OTH 0.5789 0.6875 0.6286 16
PERderiv 0.5385 0.3889 0.4516 18
PER 0.5000 0.5000 0.5000 2
ORG 0.0000 0.0000 0.0000 3
micro avg 0.8574 0.8862 0.8715 5968
macro avg 0.8575 0.8862 0.8713 5968
On the test dataset the following results could be achieved:
precision recall f1-score support
PERpart 0.8847 0.8944 0.8896 9397
OTHpart 0.9376 0.9353 0.9365 1639
ORGpart 0.7307 0.7044 0.7173 697
LOC 0.9133 0.9394 0.9262 561
LOCpart 0.8058 0.8157 0.8107 1150
ORG 0.0000 0.0000 0.0000 8
OTHderiv 0.5882 0.4762 0.5263 42
PERderiv 0.6571 0.5227 0.5823 44
OTH 0.4906 0.6667 0.5652 39
ORGderiv 0.7016 0.7791 0.7383 172
LOCderiv 0.8256 0.6514 0.7282 109
PER 0.0000 0.0000 0.0000 11
micro avg 0.8722 0.8774 0.8748 13869
macro avg 0.8712 0.8774 0.8740 13869
Based on the script run_xnli.py
.
XNLI is crowd-sourced dataset based on MultiNLI. It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-ressource language such as English and low-ressource languages such as Swahili).
This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins
on a single tesla V100 16GB. The data for XNLI can be downloaded with the following links and should be both saved (and un-zipped) in a
$XNLI_DIR
directory.
export XNLI_DIR=/path/to/XNLI
python run_xnli.py \
--model_type bert \
--model_name_or_path bert-base-multilingual-cased \
--language de \
--train_language en \
--do_train \
--do_eval \
--data_dir $XNLI_DIR \
--per_gpu_train_batch_size 32 \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--max_seq_length 128 \
--output_dir /tmp/debug_xnli/ \
--save_steps -1
Training with the previously defined hyper-parameters yields the following results on the test set:
acc = 0.7093812375249501
Based on the script run_mmimdb.py
.
MM-IMDb is a Multimodal dataset with around 26,000 movies including images, plots and other metadata.
python run_mmimdb.py \
--data_dir /path/to/mmimdb/dataset/ \
--model_type bert \
--model_name_or_path bert-base-uncased \
--output_dir /path/to/save/dir/ \
--do_train \
--do_eval \
--max_seq_len 512 \
--gradient_accumulation_steps 20 \
--num_image_embeds 3 \
--num_train_epochs 100 \
--patience 5