forked from ben1009/leetcode-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp0011_container_with_most_water.rs
67 lines (59 loc) · 1.91 KB
/
p0011_container_with_most_water.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
use std::cmp::{max, min};
/**
* [11] Container With Most Water
*
* You are given an integer array height of length n. There are n vertical lines drawn such that the two endpoints of the i^th line are (i, 0) and (i, height[i]).
* Find two lines that together with the x-axis form a container, such that the container contains the most water.
* Return the maximum amount of water a container can store.
* Notice that you may not slant the container.
*
* <strong class="example">Example 1:
* <img alt="" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/07/17/question_11.jpg" style="width: 600px; height: 287px;" />
* Input: height = [1,8,6,2,5,4,8,3,7]
* Output: 49
* Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
*
* <strong class="example">Example 2:
*
* Input: height = [1,1]
* Output: 1
*
*
* Constraints:
*
* n == height.length
* 2 <= n <= 10^5
* 0 <= height[i] <= 10^4
*
*/
pub struct Solution {}
// problem: https://leetcode.com/problems/container-with-most-water/
// discuss: https://leetcode.com/problems/container-with-most-water/discuss/?currentPage=1&orderBy=most_votes&query=
// submission codes start here
impl Solution {
pub fn max_area(height: Vec<i32>) -> i32 {
let mut ret = 0;
let mut i = 0;
let mut j = height.len() - 1;
while i < j {
let t = min(height[i], height[j]) * (j - i) as i32;
ret = max(t, ret);
if height[i] < height[j] {
i += 1;
} else {
j -= 1;
}
}
ret
}
}
// submission codes end
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_11() {
assert_eq!(Solution::max_area(vec![1, 8, 6, 2, 5, 4, 8, 3, 7]), 49);
assert_eq!(Solution::max_area(vec![1, 11]), 1);
}
}