forked from MaybeShewill-CV/lanenet-lane-detection
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_lanenet.py
executable file
·265 lines (215 loc) · 11 KB
/
train_lanenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time : 18-5-18 下午7:31
# @Author : Luo Yao
# @Site : https://github.com/MaybeShewill-CV/lanenet-lane-detection
# @File : train_lanenet.py
# @IDE: PyCharm Community Edition
"""
训练lanenet模型
"""
import argparse
import math
import os
import os.path as ops
import time
import cv2
import glog as log
import numpy as np
import tensorflow as tf
from config import global_config
from lanenet_model import lanenet_merge_model
from data_provider import lanenet_data_processor
CFG = global_config.cfg
VGG_MEAN = [103.939, 116.779, 123.68]
def init_args():
"""
:return:
"""
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', type=str, help='The training dataset dir path')
parser.add_argument('--net', type=str, help='Which base net work to use', default='vgg')
parser.add_argument('--weights_path', type=str, help='The pretrained weights path')
return parser.parse_args()
def minmax_scale(input_arr):
"""
:param input_arr:
:return:
"""
min_val = np.min(input_arr)
max_val = np.max(input_arr)
output_arr = (input_arr - min_val) * 255.0 / (max_val - min_val)
return output_arr
def train_net(dataset_dir, weights_path=None, net_flag='vgg'):
"""
:param dataset_dir:
:param net_flag: choose which base network to use
:param weights_path:
:return:
"""
# 所有训练样本列表
train_dataset_file = ops.join(dataset_dir, 'train.txt')
val_dataset_file = ops.join(dataset_dir, 'val.txt')
assert ops.exists(train_dataset_file)
train_dataset = lanenet_data_processor.DataSet(train_dataset_file)
val_dataset = lanenet_data_processor.DataSet(val_dataset_file)
input_tensor = tf.placeholder(dtype=tf.float32,
shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT,
CFG.TRAIN.IMG_WIDTH, 3],
name='input_tensor')
binary_label_tensor = tf.placeholder(dtype=tf.int64,
shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT,
CFG.TRAIN.IMG_WIDTH, 1],
name='binary_input_label')
instance_label_tensor = tf.placeholder(dtype=tf.float32,
shape=[CFG.TRAIN.BATCH_SIZE, CFG.TRAIN.IMG_HEIGHT,
CFG.TRAIN.IMG_WIDTH],
name='instance_input_label')
phase = tf.placeholder(dtype=tf.bool, shape=None, name='net_phase')
net = lanenet_merge_model.LaneNet(net_flag=net_flag, phase=phase)
# calculate the loss
compute_ret = net.compute_loss(input_tensor=input_tensor, binary_label=binary_label_tensor,
instance_label=instance_label_tensor, name='lanenet_model')
total_loss = compute_ret['total_loss']
binary_seg_loss = compute_ret['binary_seg_loss']
disc_loss = compute_ret['discriminative_loss']
pix_embedding = compute_ret['instance_seg_logits']
# calculate the accuracy
out_logits = compute_ret['binary_seg_logits']
out_logits = tf.nn.softmax(logits=out_logits)
out_logits_out = tf.argmax(out_logits, axis=-1)
out = tf.argmax(out_logits, axis=-1)
out = tf.expand_dims(out, axis=-1)
idx = tf.where(tf.equal(binary_label_tensor, 1))
pix_cls_ret = tf.gather_nd(out, idx)
recall = tf.count_nonzero(pix_cls_ret)
recall = tf.divide(recall, tf.cast(tf.shape(pix_cls_ret)[0], tf.int64))
idx = tf.where(tf.equal(binary_label_tensor, 0))
pix_cls_ret = tf.gather_nd(out, idx)
precision = tf.subtract(tf.cast(tf.shape(pix_cls_ret)[0], tf.int64), tf.count_nonzero(pix_cls_ret))
precision = tf.divide(precision, tf.cast(tf.shape(pix_cls_ret)[0], tf.int64))
accuracy = tf.divide(2.0, tf.divide(1.0, recall) + tf.divide(1.0, precision))
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(CFG.TRAIN.LEARNING_RATE, global_step,
100000, 0.1, staircase=True)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
gradients = optimizer.compute_gradients(total_loss)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
train_op = optimizer.apply_gradients(capped_gradients, global_step=global_step)
# Set tf saver
saver = tf.train.Saver()
model_save_dir = 'model/tusimple_lanenet'
if not ops.exists(model_save_dir):
os.makedirs(model_save_dir)
train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
model_name = 'tusimple_lanenet_{:s}_{:s}.ckpt'.format(net_flag, str(train_start_time))
model_save_path = ops.join(model_save_dir, model_name)
# Set tf summary
tboard_save_path = 'tboard/tusimple_lanenet/{:s}'.format(net_flag)
if not ops.exists(tboard_save_path):
os.makedirs(tboard_save_path)
train_cost_scalar = tf.summary.scalar(name='train_cost', tensor=total_loss)
val_cost_scalar = tf.summary.scalar(name='val_cost', tensor=total_loss)
train_accuracy_scalar = tf.summary.scalar(name='train_accuracy', tensor=accuracy)
val_accuracy_scalar = tf.summary.scalar(name='val_accuracy', tensor=accuracy)
train_binary_seg_loss_scalar = tf.summary.scalar(name='train_binary_seg_loss', tensor=binary_seg_loss)
val_binary_seg_loss_scalar = tf.summary.scalar(name='val_binary_seg_loss', tensor=binary_seg_loss)
train_instance_seg_loss_scalar = tf.summary.scalar(name='train_instance_seg_loss', tensor=disc_loss)
val_instance_seg_loss_scalar = tf.summary.scalar(name='val_instance_seg_loss', tensor=disc_loss)
learning_rate_scalar = tf.summary.scalar(name='learning_rate', tensor=learning_rate)
train_merge_summary_op = tf.summary.merge([train_accuracy_scalar, train_cost_scalar,
learning_rate_scalar, train_binary_seg_loss_scalar,
train_instance_seg_loss_scalar])
val_merge_summary_op = tf.summary.merge([val_accuracy_scalar, val_cost_scalar,
val_binary_seg_loss_scalar, val_instance_seg_loss_scalar])
# Set sess configuration
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
sess_config.gpu_options.allocator_type = 'BFC'
sess = tf.Session(config=sess_config)
summary_writer = tf.summary.FileWriter(tboard_save_path)
summary_writer.add_graph(sess.graph)
# Set the training parameters
train_epochs = CFG.TRAIN.EPOCHS
log.info('Global configuration is as follows:')
log.info(CFG)
with sess.as_default():
tf.train.write_graph(graph_or_graph_def=sess.graph, logdir='',
name='{:s}/lanenet_model.pbtxt'.format(model_save_dir))
if weights_path is None:
log.info('Training from scratch')
init = tf.global_variables_initializer()
sess.run(init)
else:
log.info('Restore model from last model checkpoint {:s}'.format(weights_path))
saver.restore(sess=sess, save_path=weights_path)
# 加载预训练参数
if net_flag == 'vgg' and weights_path is None:
pretrained_weights = np.load(
'./data/vgg16.npy',
encoding='latin1').item()
for vv in tf.trainable_variables():
weights_key = vv.name.split('/')[-3]
try:
weights = pretrained_weights[weights_key][0]
_op = tf.assign(vv, weights)
sess.run(_op)
except Exception as e:
continue
train_cost_time_mean = []
for epoch in range(train_epochs):
# training part
t_start = time.time()
gt_imgs, binary_gt_labels, instance_gt_labels = train_dataset.next_batch(CFG.TRAIN.BATCH_SIZE)
gt_imgs = [tmp - VGG_MEAN for tmp in gt_imgs]
_, c, train_accuracy, train_summary, binary_loss, instance_loss, embedding, binary_seg_img = \
sess.run([train_op, total_loss,
accuracy,
train_merge_summary_op,
binary_seg_loss,
disc_loss,
pix_embedding,
out_logits_out],
feed_dict={input_tensor: gt_imgs,
binary_label_tensor: binary_gt_labels,
instance_label_tensor: instance_gt_labels,
phase: True})
if math.isnan(c) or math.isnan(binary_loss) or math.isnan(instance_loss):
log.error('cost is: {:.5f}'.format(c))
log.error('binary cost is: {:.5f}'.format(binary_loss))
log.error('instance cost is: {:.5f}'.format(instance_loss))
log.error('gradients is: {}'.format(g))
cv2.imwrite('nan_image.png', gt_imgs[0] + VGG_MEAN)
cv2.imwrite('nan_instance_label.png', instance_gt_labels[0])
cv2.imwrite('nan_binary_label.png', binary_gt_labels[0] * 255)
return
if epoch % 100 == 0:
cv2.imwrite('image.png', gt_imgs[0] + VGG_MEAN)
cv2.imwrite('binary_label.png', binary_gt_labels[0] * 255)
cv2.imwrite('instance_label.png', instance_gt_labels[0])
cv2.imwrite('binary_seg_img.png', binary_seg_img[0] * 255)
for i in range(4):
embedding[0][:, :, i] = minmax_scale(embedding[0][:, :, i])
embedding_image = np.array(embedding[0], np.uint8)
cv2.imwrite('embedding.png', embedding_image)
cost_time = time.time() - t_start
train_cost_time_mean.append(cost_time)
summary_writer.add_summary(summary=train_summary, global_step=epoch)
if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
log.info('Epoch: {:d} total_loss= {:6f} binary_seg_loss= {:6f} instance_seg_loss= {:6f} accuracy= {:6f}'
' mean_cost_time= {:5f}s '.
format(epoch + 1, c, binary_loss, instance_loss, train_accuracy,
np.mean(train_cost_time_mean)))
train_cost_time_mean = []
if epoch % 1000 == 0:
saver.save(sess=sess, save_path=model_save_path, global_step=epoch)
sess.close()
return
if __name__ == '__main__':
# init args
args = init_args()
# train lanenet
train_net(args.dataset_dir, args.weights_path, net_flag=args.net)