forked from ollama/ollama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.go
1123 lines (979 loc) · 32.2 KB
/
server.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package llm
import (
"bufio"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"log"
"log/slog"
"math/rand"
"net"
"net/http"
"os"
"os/exec"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"time"
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama"
)
type LlamaServer interface {
Ping(ctx context.Context) error
WaitUntilRunning(ctx context.Context) error
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
Embedding(ctx context.Context, input string) ([]float32, error)
Tokenize(ctx context.Context, content string) ([]int, error)
Detokenize(ctx context.Context, tokens []int) (string, error)
Close() error
EstimatedVRAM() uint64 // Total VRAM across all GPUs
EstimatedTotal() uint64
EstimatedVRAMByGPU(gpuID string) uint64
}
// llmServer is an instance of the llama.cpp server
type llmServer struct {
port int
cmd *exec.Cmd
done chan error // Channel to signal when the process exits
status *StatusWriter
options api.Options
numParallel int
modelPath string
modelLock sync.Mutex // Temporary until we switch fully to Go server
model *llama.Model // If non-nil, the runner is a new Go server
estimate MemoryEstimate
totalLayers uint64
// gpuCount int
gpus discover.GpuInfoList // Recorded just before the model loaded, free space will be incorrect
loadDuration time.Duration // Record how long it took the model to load
loadProgress float32
sem *semaphore.Weighted
}
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, _, err := ggml.Decode(f, maxArraySize)
return ggml, err
}
// NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
systemInfo := discover.GetSystemInfo()
systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory := systemInfo.System.FreeMemory
systemSwapFreeMemory := systemInfo.System.FreeSwap
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
if opts.NumGPU == 0 {
gpus = discover.GetCPUInfo()
}
estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
// disable partial offloading when model is greater than total system memory as this
// can lead to locking up the system
opts.NumGPU = 0
case gpus[0].Library != "metal" && estimate.Layers == 0:
// Don't bother loading into the GPU if no layers can fit
gpus = discover.GetCPUInfo()
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
opts.NumGPU = estimate.Layers
}
}
// On linux and windows, over-allocating CPU memory will almost always result in an error
// Darwin has fully dynamic swap so has no direct concept of free swap space
if runtime.GOOS != "darwin" {
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
available := systemFreeMemory + systemSwapFreeMemory
if systemMemoryRequired > available {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
}
}
slog.Info("offload", "", estimate)
params := []string{
"--model", model,
"--ctx-size", strconv.Itoa(opts.NumCtx),
"--batch-size", strconv.Itoa(opts.NumBatch),
}
if opts.NumGPU >= 0 {
params = append(params, "--n-gpu-layers", strconv.Itoa(opts.NumGPU))
}
if envconfig.Debug() {
params = append(params, "--verbose")
}
if opts.MainGPU > 0 {
params = append(params, "--main-gpu", strconv.Itoa(opts.MainGPU))
}
if len(adapters) > 0 {
for _, adapter := range adapters {
params = append(params, "--lora", adapter)
}
}
if len(projectors) > 0 {
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
params = append(params, "--mmproj", projectors[0])
}
defaultThreads := systemInfo.GetOptimalThreadCount()
if opts.NumThread > 0 {
params = append(params, "--threads", strconv.Itoa(opts.NumThread))
} else if defaultThreads > 0 {
params = append(params, "--threads", strconv.Itoa(defaultThreads))
}
fa := envconfig.FlashAttention()
if fa && !gpus.FlashAttentionSupported() {
slog.Warn("flash attention enabled but not supported by gpu")
fa = false
}
if fa && !f.SupportsFlashAttention() {
slog.Warn("flash attention enabled but not supported by model")
fa = false
}
kvct := strings.ToLower(envconfig.KvCacheType())
if fa {
slog.Info("enabling flash attention")
params = append(params, "--flash-attn")
// Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model
if kvct != "" && f.SupportsKVCacheType(kvct) {
params = append(params, "--kv-cache-type", kvct)
} else {
slog.Warn("kv cache type not supported by model", "type", kvct)
}
} else if kvct != "" && kvct != "f16" {
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
}
// mmap has issues with partial offloading on metal
for _, g := range gpus {
if g.Library == "metal" &&
uint64(opts.NumGPU) > 0 &&
uint64(opts.NumGPU) < f.KV().BlockCount()+1 {
opts.UseMMap = new(bool)
*opts.UseMMap = false
}
}
// Windows CUDA should not use mmap for best performance
// Linux with a model larger than free space, mmap leads to thrashing
// For CPU loads we want the memory to be allocated, not FS cache
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == nil) ||
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == nil) ||
(gpus[0].Library == "cpu" && opts.UseMMap == nil) ||
(opts.UseMMap != nil && !*opts.UseMMap) {
params = append(params, "--no-mmap")
}
if opts.UseMLock {
params = append(params, "--mlock")
}
// TODO - NUMA support currently doesn't work properly
params = append(params, "--parallel", strconv.Itoa(numParallel))
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
if envconfig.MultiUserCache() {
params = append(params, "--multiuser-cache")
}
libs := make(map[string]string)
if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
for _, entry := range entries {
libs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
}
}
lib := gpus[0].RunnerName()
requested := envconfig.LLMLibrary()
if libs[requested] != "" {
slog.Info("using requested gpu library", "requested", requested)
lib = requested
}
var compatible []string
for k := range libs {
// exact match first
if k == lib {
compatible = append([]string{k}, compatible...)
continue
}
// then match the family (e.g. 'cuda')
if strings.Split(k, "_")[0] == strings.Split(lib, "_")[0] {
compatible = append(compatible, k)
}
}
slog.Debug("compatible gpu libraries", "compatible", compatible)
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {
port := 0
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
var l *net.TCPListener
if l, err = net.ListenTCP("tcp", a); err == nil {
port = l.Addr().(*net.TCPAddr).Port
l.Close()
}
}
if port == 0 {
slog.Debug("ResolveTCPAddr failed, using random port")
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
}
finalParams := []string{"runner"}
if envconfig.NewEngine() {
finalParams = append(finalParams, "--ollama-engine")
}
finalParams = append(finalParams, params...)
finalParams = append(finalParams, "--port", strconv.Itoa(port))
var pathEnv string
switch runtime.GOOS {
case "windows":
pathEnv = "PATH"
case "darwin":
pathEnv = "DYLD_LIBRARY_PATH"
default:
pathEnv = "LD_LIBRARY_PATH"
}
var libraryPaths []string
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
if len(compatible) > 0 {
c := compatible[0]
if libpath, ok := libs[c]; ok {
slog.Debug("adding gpu library", "path", libpath)
libraryPaths = append(libraryPaths, libpath)
}
}
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != nil {
slog.Debug("adding gpu dependency paths", "paths", gpus[0].DependencyPath)
// assume gpus from the same library have the same dependency path
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
// finally, add the root library path
libraryPaths = append(libraryPaths, discover.LibOllamaPath)
exe, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("unable to lookup executable path: %w", err)
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
// TODO - once fully switched to the Go runner, load the model here for tokenize/detokenize cgo access
s := &llmServer{
port: port,
cmd: exec.Command(exe, finalParams...),
status: NewStatusWriter(os.Stderr),
options: opts,
modelPath: model,
estimate: estimate,
numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: f.KV().BlockCount() + 1,
gpus: gpus,
done: make(chan error, 1),
}
s.cmd.Env = os.Environ()
s.cmd.Stdout = os.Stdout
s.cmd.Stderr = s.status
s.cmd.SysProcAttr = LlamaServerSysProcAttr
envWorkarounds := [][2]string{}
for _, gpu := range gpus {
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
}
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
// Update or add the path and visible devices variable with our adjusted version
pathNeeded := true
devicesNeeded := visibleDevicesEnv != ""
for i := range s.cmd.Env {
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
if strings.EqualFold(cmp[0], pathEnv) {
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
pathNeeded = false
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
devicesNeeded = false
} else if len(envWorkarounds) != 0 {
for _, kv := range envWorkarounds {
if strings.EqualFold(cmp[0], kv[0]) {
s.cmd.Env[i] = kv[0] + "=" + kv[1]
}
}
}
}
if pathNeeded {
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
}
if devicesNeeded {
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
}
slog.Info("starting llama server", "cmd", s.cmd.String())
if envconfig.Debug() {
filteredEnv := []string{}
for _, ev := range s.cmd.Env {
if strings.HasPrefix(ev, "CUDA_") ||
strings.HasPrefix(ev, "ROCR_") ||
strings.HasPrefix(ev, "ROCM_") ||
strings.HasPrefix(ev, "HIP_") ||
strings.HasPrefix(ev, "GPU_") ||
strings.HasPrefix(ev, "HSA_") ||
strings.HasPrefix(ev, "GGML_") ||
strings.HasPrefix(ev, "PATH=") ||
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") ||
strings.HasPrefix(ev, "DYLD_LIBRARY_PATH=") {
filteredEnv = append(filteredEnv, ev)
}
}
// Log at debug as the environment is inherited and might contain sensitive information
slog.Debug("subprocess", "environment", filteredEnv)
}
if err = s.cmd.Start(); err != nil {
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
err := fmt.Errorf("error starting runner: %v %s", err, msg)
if len(compatible) == 0 {
return nil, err
}
slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
compatible = compatible[1:]
continue
}
// reap subprocess when it exits
go func() {
err := s.cmd.Wait()
// Favor a more detailed message over the process exit status
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
slog.Error("llama runner terminated", "error", err)
if strings.Contains(s.status.LastErrMsg, "unknown model") {
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
}
s.done <- errors.New(s.status.LastErrMsg)
} else {
s.done <- err
}
}()
return s, nil
}
}
type ServerStatus int
const ( // iota is reset to 0
ServerStatusReady ServerStatus = iota
ServerStatusNoSlotsAvailable
ServerStatusLoadingModel
ServerStatusNotResponding
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "llm server ready"
case ServerStatusNoSlotsAvailable:
return "llm busy - no slots available"
case ServerStatusLoadingModel:
return "llm server loading model"
case ServerStatusNotResponding:
return "llm server not responding"
default:
return "llm server error"
}
}
type ServerStatusResp struct {
Status string `json:"status"`
SlotsIdle int `json:"slots_idle"`
SlotsProcessing int `json:"slots_processing"`
Error string `json:"error"`
Progress float32 `json:"progress"`
}
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
// Fail fast if its exited
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
if s.cmd.ProcessState.ExitCode() == -1 {
// Most likely a signal killed it, log some more details to try to help troubleshoot
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
}
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
if err != nil {
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
if errors.Is(err, context.DeadlineExceeded) {
return ServerStatusNotResponding, errors.New("server not responding")
}
return ServerStatusError, fmt.Errorf("health resp: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return ServerStatusError, fmt.Errorf("read health request: %w", err)
}
var status ServerStatusResp
if err := json.Unmarshal(body, &status); err != nil {
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
}
switch status.Status {
case "ok":
return ServerStatusReady, nil
case "no slot available":
return ServerStatusNoSlotsAvailable, nil
case "loading model":
s.loadProgress = status.Progress
return ServerStatusLoadingModel, nil
default:
return ServerStatusError, fmt.Errorf("server error: %+v", status)
}
}
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
var retries int
for {
status, err := s.getServerStatus(ctx)
if err != nil {
return status, err
}
if status == ServerStatusNoSlotsAvailable {
if retries >= 10 {
return status, fmt.Errorf("no slots available after %d retries", retries)
}
time.Sleep(5 * time.Millisecond)
retries++
continue
}
return status, nil
}
}
func (s *llmServer) Ping(ctx context.Context) error {
_, err := s.getServerStatus(ctx)
if err != nil {
slog.Debug("server unhealthy", "error", err)
return err
}
return nil
}
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
start := time.Now()
stallDuration := envconfig.LoadTimeout() // If no progress happens
stallTimer := time.Now().Add(stallDuration) // give up if we stall
slog.Info("waiting for llama runner to start responding")
var lastStatus ServerStatus = -1
fullyLoaded := false
for {
select {
case <-ctx.Done():
slog.Warn("client connection closed before server finished loading, aborting load")
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
case err := <-s.done:
return fmt.Errorf("llama runner process has terminated: %w", err)
default:
}
if time.Now().After(stallTimer) {
// timeout
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
}
if s.cmd.ProcessState != nil {
msg := ""
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
}
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
}
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
defer cancel()
priorProgress := s.loadProgress
status, _ := s.getServerStatus(ctx)
if lastStatus != status && status != ServerStatusReady {
// Only log on status changes
slog.Info("waiting for server to become available", "status", status.ToString())
}
switch status {
case ServerStatusReady:
s.loadDuration = time.Since(start)
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", s.loadDuration.Seconds()))
return nil
default:
lastStatus = status
// Reset the timer as long as we're making forward progress on the load
if priorProgress != s.loadProgress {
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
stallTimer = time.Now().Add(stallDuration)
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
stallTimer = time.Now().Add(stallDuration)
fullyLoaded = true
}
time.Sleep(time.Millisecond * 250)
continue
}
}
}
var grammarJSON = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\\x7F\x00-\x1F] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
const maxBufferSize = 512 * format.KiloByte
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
AspectRatioID int `json:"aspect_ratio_id"`
}
type completion struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
StoppedLimit bool `json:"stopped_limit"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
type CompletionRequest struct {
Prompt string
Format json.RawMessage
Images []ImageData
Options *api.Options
}
type CompletionResponse struct {
Content string
DoneReason string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
request := map[string]any{
"prompt": req.Prompt,
"stream": true,
"n_predict": req.Options.NumPredict,
"n_keep": req.Options.NumKeep,
"main_gpu": req.Options.MainGPU,
"temperature": req.Options.Temperature,
"top_k": req.Options.TopK,
"top_p": req.Options.TopP,
"min_p": req.Options.MinP,
"typical_p": req.Options.TypicalP,
"repeat_last_n": req.Options.RepeatLastN,
"repeat_penalty": req.Options.RepeatPenalty,
"presence_penalty": req.Options.PresencePenalty,
"frequency_penalty": req.Options.FrequencyPenalty,
"mirostat": req.Options.Mirostat,
"mirostat_tau": req.Options.MirostatTau,
"mirostat_eta": req.Options.MirostatEta,
"seed": req.Options.Seed,
"stop": req.Options.Stop,
"image_data": req.Images,
"cache_prompt": true,
}
if len(req.Format) > 0 {
switch string(req.Format) {
case `null`, `""`:
// Field was set, but "missing" a value. We accept
// these as "not set".
break
case `"json"`:
request["grammar"] = grammarJSON
default:
if req.Format[0] != '{' {
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
}
// User provided a JSON schema
g := llama.SchemaToGrammar(req.Format)
if g == nil {
return fmt.Errorf("invalid JSON schema in format")
}
request["grammar"] = string(g)
}
}
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting completion request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return err
}
defer s.sem.Release(1)
// put an upper limit on num_predict to avoid the model running on forever
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
req.Options.NumPredict = 10 * s.options.NumCtx
}
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
if err != nil {
return err
} else if status != ServerStatusReady {
return fmt.Errorf("unexpected server status: %s", status.ToString())
}
// Handling JSON marshaling with special characters unescaped.
buffer := &bytes.Buffer{}
enc := json.NewEncoder(buffer)
enc.SetEscapeHTML(false)
if err := enc.Encode(request); err != nil {
return fmt.Errorf("failed to marshal data: %v", err)
}
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
if err != nil {
return fmt.Errorf("error creating POST request: %v", err)
}
serverReq.Header.Set("Content-Type", "application/json")
res, err := http.DefaultClient.Do(serverReq)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
}
defer res.Body.Close()
if res.StatusCode >= 400 {
bodyBytes, err := io.ReadAll(res.Body)
if err != nil {
return fmt.Errorf("failed reading llm error response: %w", err)
}
log.Printf("llm predict error: %s", bodyBytes)
return fmt.Errorf("%s", bodyBytes)
}
scanner := bufio.NewScanner(res.Body)
buf := make([]byte, 0, maxBufferSize)
scanner.Buffer(buf, maxBufferSize)
// keep track of the last token generated, this is used to abort if the model starts looping
var lastToken string
var tokenRepeat int
for scanner.Scan() {
select {
case <-ctx.Done():
// This handles the request cancellation
return ctx.Err()
default:
line := scanner.Bytes()
if len(line) == 0 {
continue
}
// slog.Debug("got line", "line", string(line))
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
evt = line
}
var c completion
if err := json.Unmarshal(evt, &c); err != nil {
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
}
switch {
case strings.TrimSpace(c.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(c.Content)
tokenRepeat = 0
}
// 30 picked as an arbitrary max token repeat limit, modify as needed
if tokenRepeat > 30 {
slog.Debug("prediction aborted, token repeat limit reached")
return ctx.Err()
}
if c.Content != "" {
fn(CompletionResponse{
Content: c.Content,
})
}
if c.Stop {
doneReason := "stop"
if c.StoppedLimit {
doneReason = "length"
}
fn(CompletionResponse{
Done: true,
DoneReason: doneReason,
PromptEvalCount: c.Timings.PromptN,
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
EvalCount: c.Timings.PredictedN,
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
})
return nil
}
}
}
if err := scanner.Err(); err != nil {
if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
s.Close()
var msg string
if s.status != nil && s.status.LastErrMsg != "" {
msg = s.status.LastErrMsg
} else {
msg = err.Error()
}
return fmt.Errorf("an error was encountered while running the model: %s", msg)
}
return fmt.Errorf("error reading llm response: %v", err)
}
return nil
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
if err := s.sem.Acquire(ctx, 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embedding request due to client closing the connection")
} else {
slog.Error("Failed to acquire semaphore", "error", err)
}
return nil, err
}
defer s.sem.Release(1)
// Make sure the server is ready
status, err := s.getServerStatusRetry(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(EmbeddingRequest{Content: input})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("error creating embed request: %w", err)
}
r.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(r)
if err != nil {
return nil, fmt.Errorf("do embedding request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("error reading embed response: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm embedding error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var e EmbeddingResponse
if err := json.Unmarshal(body, &e); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return e.Embedding, nil
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
s.modelLock.Lock()
defer s.modelLock.Unlock()
if s.model != nil {
return s.model.Tokenize(content, false, true)
}
// Make sure the server is ready
status, err := s.getServerStatus(ctx)
if err != nil {
return nil, err
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
}
data, err := json.Marshal(TokenizeRequest{Content: content})
if err != nil {
return nil, fmt.Errorf("marshaling encode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("encode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("do encode request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
s.model = m
}
return s.model.Tokenize(content, false, true)
}
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("read encode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var encoded TokenizeResponse
if err := json.Unmarshal(body, &encoded); err != nil {
return nil, fmt.Errorf("unmarshal encode response: %w", err)
}
return encoded.Tokens, nil
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {