-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalp_gmm.py
210 lines (175 loc) · 8.02 KB
/
alp_gmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
Copied from
https://github.com/flowersteam/teachDeepRL/blob/master/teachDRL/teachers/algos/alp_gmm.py
@misc{portelas2019teacher,
title={Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments},
author={Rémy Portelas and Cédric Colas and Katja Hofmann and Pierre-Yves Oudeyer},
year={2019},
eprint={1910.07224},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
"""
from sklearn.mixture import GaussianMixture as GMM
import numpy as np
from gym.spaces import Box
from alp.dataset import BufferedDataset
def proportional_choice(v, eps=0.0):
if np.sum(v) == 0 or np.random.rand() < eps:
return np.random.randint(np.size(v))
else:
probas = np.array(v) / np.sum(v)
return np.where(np.random.multinomial(1, probas) == 1)[0][0]
# Absolute Learning Progress (ALP) computer object
# It uses a buffered kd-tree to efficiently implement a k-nearest-neighbor algorithm
class EmpiricalALPComputer:
def __init__(self, task_size, max_size=None, buffer_size=500):
self.alp_knn = BufferedDataset(
1, task_size, buffer_size=buffer_size, lateness=0, max_size=max_size
)
def compute_alp(self, task, reward):
alp = 0
if len(self.alp_knn) > 5:
# Compute absolute learning progress for new task
# 1 - Retrieve closest previous task
dist, idx = self.alp_knn.nn_y(task)
# 2 - Retrieve corresponding reward
closest_previous_task_reward = self.alp_knn.get_x(idx[0])
# 3 - Compute alp as absolute difference in reward
lp = reward - closest_previous_task_reward
alp = np.abs(lp)
# Add to database
self.alp_knn.add_xy(reward, task)
return alp
# Absolute Learning Progress - Gaussian Mixture Model
# mins / maxs are vectors defining task space boundaries (ex: mins=[0,0,0] maxs=[1,1,1])
class ALPGMM:
def __init__(self, mins, maxs, seed=None, params=dict()):
self.seed = seed
if not seed:
self.seed = np.random.randint(42, 424242)
np.random.seed(self.seed)
# Task space boundaries
self.mins = np.array(mins)
self.maxs = np.array(maxs)
# Range of number of Gaussians to try when fitting the GMM
self.potential_ks = (
np.arange(2, 11, 1)
if "potential_ks" not in params
else params["potential_ks"]
)
# Restart new fit by initializing with last fit
self.warm_start = False if "warm_start" not in params else params["warm_start"]
# Fitness criterion when selecting best GMM among range of GMMs varying in number of Gaussians.
self.gmm_fitness_fun = (
"aic" if "gmm_fitness_fun" not in params else params["gmm_fitness_fun"]
)
# Number of Expectation-Maximization trials when fitting
self.nb_em_init = 1 if "nb_em_init" not in params else params["nb_em_init"]
# Number of episodes between two fit of the GMM
self.fit_rate = 250 if "fit_rate" not in params else params["fit_rate"]
self.nb_random = self.fit_rate # Number of bootstrapping episodes
# Ratio of randomly sampled tasks VS tasks sampling using GMM
self.random_task_ratio = (
0.2 if "random_task_ratio" not in params else params["random_task_ratio"]
)
self.random_task_generator = Box(self.mins, self.maxs, dtype=np.float32)
# Maximal number of episodes to account for when computing ALP
alp_max_size = None if "alp_max_size" not in params else params["alp_max_size"]
alp_buffer_size = (
500 if "alp_buffer_size" not in params else params["alp_buffer_size"]
)
# Init ALP computer
self.alp_computer = EmpiricalALPComputer(
len(mins), max_size=alp_max_size, buffer_size=alp_buffer_size
)
self.tasks = []
self.alps = []
self.tasks_alps = []
# Init GMMs
self.potential_gmms = [self.init_gmm(k) for k in self.potential_ks]
# Boring book-keeping
self.bk = {
"weights": [],
"covariances": [],
"means": [],
"tasks_alps": [],
"episodes": [],
}
def init_gmm(self, nb_gaussians):
return GMM(
n_components=nb_gaussians,
covariance_type="full",
random_state=self.seed,
warm_start=self.warm_start,
n_init=self.nb_em_init,
)
def get_nb_gmm_params(self, gmm):
# assumes full covariance
# see https://stats.stackexchange.com/questions/229293/the-number-of-parameters-in-gaussian-mixture-model
nb_gmms = gmm.get_params()["n_components"]
d = len(self.mins)
params_per_gmm = (d * d - d) / 2 + 2 * d + 1
return nb_gmms * params_per_gmm - 1
def update(self, task, reward):
self.tasks.append(task)
# Compute corresponding ALP
self.alps.append(self.alp_computer.compute_alp(task, reward))
# Concatenate task vector with ALP dimension
self.tasks_alps.append(np.array(task.tolist() + [self.alps[-1]]))
if len(self.tasks) >= self.nb_random: # If initial bootstrapping is done
if (len(self.tasks) % self.fit_rate) == 0: # Time to fit
# 1 - Retrieve last <fit_rate> (task, reward) pairs
cur_tasks_alps = np.array(self.tasks_alps[-self.fit_rate :])
# 2 - Fit batch of GMMs with varying number of Gaussians
self.potential_gmms = [
g.fit(cur_tasks_alps) for g in self.potential_gmms
]
# 3 - Compute fitness and keep best GMM
fitnesses = []
if self.gmm_fitness_fun == "bic": # Bayesian Information Criterion
fitnesses = [m.bic(cur_tasks_alps) for m in self.potential_gmms]
elif self.gmm_fitness_fun == "aic": # Akaike Information Criterion
fitnesses = [m.aic(cur_tasks_alps) for m in self.potential_gmms]
elif self.gmm_fitness_fun == "aicc": # Modified AIC
n = self.fit_rate
fitnesses = []
for l, m in enumerate(self.potential_gmms):
k = self.get_nb_gmm_params(m)
penalty = (2 * k * (k + 1)) / (n - k - 1)
fitnesses.append(m.aic(cur_tasks_alps) + penalty)
else:
raise NotImplementedError
exit(1)
self.gmm = self.potential_gmms[np.argmin(fitnesses)]
# book-keeping
self.bk["weights"].append(self.gmm.weights_.copy())
self.bk["covariances"].append(self.gmm.covariances_.copy())
self.bk["means"].append(self.gmm.means_.copy())
self.bk["tasks_alps"] = self.tasks_alps
self.bk["episodes"].append(len(self.tasks))
def sample_task(self):
if (len(self.tasks) < self.nb_random) or (
np.random.random() < self.random_task_ratio
):
# Random task sampling
new_task = self.random_task_generator.sample()
else:
# ALP-based task sampling
# 1 - Retrieve the mean ALP value of each Gaussian in the GMM
self.alp_means = []
for pos, _, w in zip(
self.gmm.means_, self.gmm.covariances_, self.gmm.weights_
):
self.alp_means.append(pos[-1])
# 2 - Sample Gaussian proportionally to its mean ALP
idx = proportional_choice(self.alp_means, eps=0.0)
# 3 - Sample task in Gaussian, without forgetting to remove ALP dimension
new_task = np.random.multivariate_normal(
self.gmm.means_[idx], self.gmm.covariances_[idx]
)[:-1]
new_task = np.clip(new_task, self.mins, self.maxs).astype(np.float32)
return new_task
def dump(self, dump_dict):
dump_dict.update(self.bk)
return dump_dict