forked from kujason/avod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kitti_bev_vis.py
173 lines (130 loc) · 4.93 KB
/
kitti_bev_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
from google.protobuf import text_format
import numpy as np
import numpy.random as random
from wavedata.tools.obj_detection import obj_utils
from wavedata.tools.visualization import vis_utils
from avod.builders.dataset_builder import DatasetBuilder
from avod.core import box_3d_encoder
from avod.core import box_3d_projector
def draw_boxes(image, boxes_norm):
"""Draws green boxes on the bev image
Args:
image: bev image
boxes_norm: box corners normalized to the size of the image
[[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
Returns:
The image with boxes drawn on it. If boxes_norm is None,
returns the original image
"""
# Draw boxes if they exist
if boxes_norm is not None:
# Convert image to 3 channel
image = (image * 255.0).astype(np.uint8)
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
for box_points in boxes_norm:
image_shape = np.flip(image.shape[0:2], axis=0)
for box_point_idx in range(len(box_points)):
start_point = box_points[box_point_idx] * image_shape
end_point = box_points[(box_point_idx + 1) % 4] * image_shape
start_point = start_point.astype(np.int32)
end_point = end_point.astype(np.int32)
cv2.line(
image, tuple(start_point),
tuple(end_point),
(0, 255, 0), thickness=1)
return image
def main():
"""
Displays the bird's eye view maps for a KITTI sample.
"""
##############################
# Options
##############################
bev_generator = 'slices'
slices_config = \
"""
slices {
height_lo: -0.2
height_hi: 2.3
num_slices: 5
}
"""
# Use None for a random image
img_idx = None
# img_idx = 142
# img_idx = 191
show_ground_truth = True # Whether to overlay ground_truth boxes
point_cloud_source = 'lidar'
##############################
# End of Options
##############################
dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL)
dataset_config = DatasetBuilder.merge_defaults(dataset_config)
# Overwrite bev_generator
if bev_generator == 'slices':
text_format.Merge(slices_config,
dataset_config.kitti_utils_config.bev_generator)
else:
raise ValueError('Invalid bev_generator')
dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
use_defaults=False)
if img_idx is None:
img_idx = int(random.random() * dataset.num_samples)
sample_name = "{:06}".format(img_idx)
print('=== Showing BEV maps for image: {}.png ==='.format(sample_name))
# Load image
image = cv2.imread(dataset.get_rgb_image_path(sample_name))
image_shape = image.shape[0:2]
kitti_utils = dataset.kitti_utils
point_cloud = kitti_utils.get_point_cloud(
point_cloud_source, img_idx, image_shape)
ground_plane = kitti_utils.get_ground_plane(sample_name)
bev_images = kitti_utils.create_bev_maps(point_cloud, ground_plane)
height_maps = np.array(bev_images.get("height_maps"))
density_map = np.array(bev_images.get("density_map"))
box_points, box_points_norm = [None, None]
if show_ground_truth:
# Get projected boxes
obj_labels = obj_utils.read_labels(dataset.label_dir, img_idx)
filtered_objs = obj_labels
label_boxes = []
for label in filtered_objs:
box = box_3d_encoder.object_label_to_box_3d(label)
label_boxes.append(box)
label_boxes = np.array(label_boxes)
box_points, box_points_norm = box_3d_projector.project_to_bev(
label_boxes, [[-40, 40], [0, 70]])
rgb_img_size = (np.array((1242, 375)) * 0.75).astype(np.int16)
img_x_start = 60
img_y_start = 330
img_x = img_x_start
img_y = img_y_start
img_w = 400
img_h = 350
img_titlebar_h = 20
# Show images
vis_utils.cv2_show_image("Image", image,
size_wh=rgb_img_size, location_xy=(img_x, 0))
# Height maps
for map_idx in range(len(height_maps)):
height_map = height_maps[map_idx]
height_map = draw_boxes(height_map, box_points_norm)
vis_utils.cv2_show_image(
"Height Map {}".format(map_idx), height_map, size_wh=(
img_w, img_h), location_xy=(
img_x, img_y))
img_x += img_w
# Wrap around
if (img_x + img_w) > 1920:
img_x = img_x_start
img_y += img_h + img_titlebar_h
# Density map
density_map = draw_boxes(density_map, box_points_norm)
vis_utils.cv2_show_image(
"Density Map", density_map, size_wh=(
img_w, img_h), location_xy=(
img_x, img_y))
cv2.waitKey()
if __name__ == "__main__":
main()