forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextending-ggplot2.Rmd
547 lines (410 loc) · 22.2 KB
/
extending-ggplot2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
---
title: "Extending ggplot2"
author: "Hadley Wickham"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Extending ggplot2}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
library(ggplot2)
```
This vignette documents the official extension mechanism provided in ggplot2 2.0.0. This vignette is a high-level adjunct to the low-level details found in `?Stat`, `?Geom` and `?theme`. You'll learn how to extend ggplot2 by creating a new stat, geom, or theme.
As you read this document, you'll see many things that will make you scratch your head and wonder why on earth is it designed this way? Mostly it's historical accident - I wasn't a terribly good R programmer when I started writing ggplot2 and I made a lot of questionable decisions. We cleaned up as many of those issues as possible in the 2.0.0 release, but some fixes simply weren't worth the effort.
## ggproto
All ggplot2 objects are built using the ggproto system of object oriented programming. This OO system is used only in one place: ggplot2. This is mostly historical accident: ggplot2 started off using [proto]( https://cran.r-project.org/package=proto) because I needed mutable objects. This was well before the creation of (the briefly lived) [mutatr](http://vita.had.co.nz/papers/mutatr.html), reference classes and R6: proto was the only game in town.
But why ggproto? Well when we turned to add an official extension mechanism to ggplot2, we found a major problem that caused problems when proto objects were extended in a different package (methods were evaluated in ggplot2, not the package where the extension was added). We tried converting to R6, but it was a poor fit for the needs of ggplot2. We could've modified proto, but that would've first involved understanding exactly how proto worked, and secondly making sure that the changes didn't affect other users of proto.
It's strange to say, but this is a case where inventing a new OO system was actually the right answer to the problem! Fortunately Winston is now very good at creating OO systems, so it only took him a day to come up with ggproto: it maintains all the features of proto that ggplot2 needs, while allowing cross package inheritance to work.
Here's a quick demo of ggproto in action:
```{r ggproto-intro}
A <- ggproto("A", NULL,
x = 1,
inc = function(self) {
self$x <- self$x + 1
}
)
A$x
A$inc()
A$x
A$inc()
A$inc()
A$x
```
The majority of ggplot2 classes are immutable and static: the methods neither use nor modify state in the class. They're mostly used as a convenient way of bundling related methods together.
To create a new geom or stat, you will just create a new ggproto that inherits from `Stat`, `Geom` and override the methods described below.
## Creating a new stat
### The simplest stat
We'll start by creating a very simple stat: one that gives the convex hull (the _c_ hull) of a set of points. First we create a new ggproto object that inherits from `Stat`:
```{r chull}
StatChull <- ggproto("StatChull", Stat,
compute_group = function(data, scales) {
data[chull(data$x, data$y), , drop = FALSE]
},
required_aes = c("x", "y")
)
```
The two most important components are the `compute_group()` method (which does the computation), and the `required_aes` field, which lists which aesthetics must be present in order to for the stat to work.
Next we write a layer function. Unfortunately, due to an early design mistake I called these either `stat_()` or `geom_()`. A better decision would have been to call them `layer_()` functions: that's a more accurate description because every layer involves a stat _and_ a geom.
All layer functions follow the same form - you specify defaults in the function arguments and then call the `layer()` function, sending `...` into the `params` argument. The arguments in `...` will either be arguments for the geom (if you're making a stat wrapper), arguments for the stat (if you're making a geom wrapper), or aesthetics to be set. `layer()` takes care of teasing the different parameters apart and making sure they're stored in the right place:
```{r}
stat_chull <- function(mapping = NULL, data = NULL, geom = "polygon",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
stat = StatChull, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
```
(Note that if you're writing this in your own package, you'll either need to call `ggplot2::layer()` explicitly, or import the `layer()` function into your package namespace.)
Once we have a layer function we can try our new stat:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_chull(fill = NA, colour = "black")
```
(We'll see later how to change the defaults of the geom so that you don't need to specify `fill = NA` every time.)
Once we've written this basic object, ggplot2 gives a lot for free. For example, ggplot2 automatically preserves aesthetics that are constant within each group:
```{r}
ggplot(mpg, aes(displ, hwy, colour = drv)) +
geom_point() +
stat_chull(fill = NA)
```
We can also override the default geom to display the convex hull in a different way:
```{r}
ggplot(mpg, aes(displ, hwy)) +
stat_chull(geom = "point", size = 4, colour = "red") +
geom_point()
```
### Stat parameters
A more complex stat will do some computation. Let's implement a simple version of `geom_smooth()` that adds a line of best fit to a plot. We create a `StatLm` that inherits from `Stat` and a layer function, `stat_lm()`:
```{r}
StatLm <- ggproto("StatLm", Stat,
required_aes = c("x", "y"),
compute_group = function(data, scales) {
rng <- range(data$x, na.rm = TRUE)
grid <- data.frame(x = rng)
mod <- lm(y ~ x, data = data)
grid$y <- predict(mod, newdata = grid)
grid
}
)
stat_lm <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
stat = StatLm, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_lm()
```
`StatLm` is inflexible because it has no parameters. We might want to allow the user to control the model formula and the number of points used to generate the grid. To do so, we add arguments to the `compute_group()` method and our wrapper function:
```{r}
StatLm <- ggproto("StatLm", Stat,
required_aes = c("x", "y"),
compute_group = function(data, scales, params, n = 100, formula = y ~ x) {
rng <- range(data$x, na.rm = TRUE)
grid <- data.frame(x = seq(rng[1], rng[2], length = n))
mod <- lm(formula, data = data)
grid$y <- predict(mod, newdata = grid)
grid
}
)
stat_lm <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, n = 50, formula = y ~ x,
...) {
layer(
stat = StatLm, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(n = n, formula = formula, na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_lm(formula = y ~ poly(x, 10)) +
stat_lm(formula = y ~ poly(x, 10), geom = "point", colour = "red", n = 20)
```
Note that we don't _have_ to explicitly include the new parameters in the arguments for the layer, `...` will get passed to the right place anyway. But you'll need to document them somewhere so the user knows about them. Here's a brief example. Note `@inheritParams ggplot2::stat_identity`: that will automatically inherit documentation for all the parameters also defined for `stat_identity()`.
```{r}
#' @inheritParams ggplot2::stat_identity
#' @param formula The modelling formula passed to \code{lm}. Should only
#' involve \code{y} and \code{x}
#' @param n Number of points used for interpolation.
stat_lm <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, n = 50, formula = y ~ x,
...) {
layer(
stat = StatLm, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(n = n, formula = formula, na.rm = na.rm, ...)
)
}
```
### Picking defaults
Sometimes you have calculations that should be performed once for the complete dataset, not once for each group. This is useful for picking sensible default values. For example, if we want to do a density estimate, it's reasonable to pick one bandwidth for the whole plot. The following Stat creates a variation of the `stat_density()` that picks one bandwidth for all groups by choosing the mean of the "best" bandwidth for each group (I have no theoretical justification for this, but it doesn't seem unreasonable).
To do this we override the `setup_params()` method. It's passed the data and a list of params, and returns an updated list.
```{r}
StatDensityCommon <- ggproto("StatDensityCommon", Stat,
required_aes = "x",
setup_params = function(data, params) {
if (!is.null(params$bandwidth))
return(params)
xs <- split(data$x, data$group)
bws <- vapply(xs, bw.nrd0, numeric(1))
bw <- mean(bws)
message("Picking bandwidth of ", signif(bw, 3))
params$bandwidth <- bw
params
},
compute_group = function(data, scales, bandwidth = 1) {
d <- density(data$x, bw = bandwidth)
data.frame(x = d$x, y = d$y)
}
)
stat_density_common <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, bandwidth = NULL,
...) {
layer(
stat = StatDensityCommon, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(bandwidth = bandwidth, na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, colour = drv)) +
stat_density_common()
ggplot(mpg, aes(displ, colour = drv)) +
stat_density_common(bandwidth = 0.5)
```
I recommend using `NULL` as a default value. If you pick important parameters automatically, it's a good idea to `message()` to the user (and when printing a floating point parameter, using `signif()` to show only a few significant digits).
### Variable names and default aesthetics
This stat illustrates another important point. If we want to make this stat usable with other geoms, we should return a variable called `density` instead of `y`. Then we can set up the `default_aes` to automatically map `density` to `y`, which allows the user to override it to use with different geoms:
```{r}
StatDensityCommon <- ggproto("StatDensity2", Stat,
required_aes = "x",
default_aes = aes(y = ..density..),
compute_group = function(data, scales, bandwidth = 1) {
d <- density(data$x, bw = bandwidth)
data.frame(x = d$x, density = d$y)
}
)
ggplot(mpg, aes(displ, drv, colour = ..density..)) +
stat_density_common(bandwidth = 1, geom = "point")
```
However, using this stat with the area geom doesn't work quite right. The areas don't stack on top of each other:
```{r}
ggplot(mpg, aes(displ, fill = drv)) +
stat_density_common(bandwidth = 1, geom = "area", position = "stack")
```
This is because each density is computed independently, and the estimated `x`s don't line up. We can resolve that issue by computing the range of the data once in `setup_params()`.
```{r}
StatDensityCommon <- ggproto("StatDensityCommon", Stat,
required_aes = "x",
default_aes = aes(y = ..density..),
setup_params = function(data, params) {
min <- min(data$x) - 3 * params$bandwidth
max <- max(data$x) + 3 * params$bandwidth
list(
bandwidth = params$bandwidth,
min = min,
max = max,
na.rm = params$na.rm
)
},
compute_group = function(data, scales, min, max, bandwidth = 1) {
d <- density(data$x, bw = bandwidth, from = min, to = max)
data.frame(x = d$x, density = d$y)
}
)
ggplot(mpg, aes(displ, fill = drv)) +
stat_density_common(bandwidth = 1, geom = "area", position = "stack")
ggplot(mpg, aes(displ, drv, fill = ..density..)) +
stat_density_common(bandwidth = 1, geom = "raster")
```
### Exercises
1. Extend `stat_chull` to compute the alpha hull, as from the
[alphahull](https://cran.r-project.org/package=alphahull) package. Your
new stat should take an `alpha` argument.
1. Modify the final version of `StatDensityCommon` to allow the user to
specify the `min` and `max` parameters. You'll need to modify both the
layer function and the `compute_group()` method.
1. Compare and contrast `StatLm` to `ggplot2::StatSmooth`. What key
differences make `StatSmooth` more complex than `StatLm`?
## Creating a new geom
It's harder to create a new geom than a new stat because you also need to know some grid. ggplot2 is built on top of grid, so you'll need to know the basics of drawing with grid. If you're serious about adding a new geom, I'd recommend buying [R graphics](http://amzn.com/B00I60M26G) by Paul Murrell. It tells you everything you need to know about drawing with grid.
### A simple geom
It's easiest to start with a simple example. The code below is a simplified version of `geom_point()`:
```{r GeomSimplePoint}
GeomSimplePoint <- ggproto("GeomSimplePoint", Geom,
required_aes = c("x", "y"),
default_aes = aes(shape = 19, colour = "black"),
draw_key = draw_key_point,
draw_panel = function(data, panel_scales, coord) {
coords <- coord$transform(data, panel_scales)
grid::pointsGrob(
coords$x, coords$y,
pch = coords$shape,
gp = grid::gpar(col = coords$colour)
)
}
)
geom_simple_point <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
geom = GeomSimplePoint, mapping = mapping, data = data, stat = stat,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_simple_point()
```
This is very similar to defining a new stat. You always need to provide fields/methods for the four pieces shown above:
* `required_aes` is a character vector which lists all the aesthetics that
the user must provide.
* `default_aes` lists the aesthetics that have default values.
* `draw_key` provides the function used to draw the key in the legend.
You can see a list of all the build in key functions in `?draw_key`
* `draw_group()` is where the magic happens. This function takes three
arguments and returns a grid grob. It is called once for each panel.
It's the most complicated part and is described in more detail below.
`draw_group()` has three arguments:
* `data`: a data frame with one column for each aesthetic.
* `panel_scales`: a list containing information about the x and y scales
for the current panel.
* `coord`: an object describing the coordinate system.
Generally you won't use `panel_scales` and `coord` directly, but you will always use them to transform the data: `coords <- coord$transform(data, panel_scales)`. This creates a data frame where position variables are scaled to the range 0--1. You then take this data and call a grid grob function. (Transforming for non-Cartesian coordinate systems is quite complex - you're best off transforming your data to the form accepted by an existing ggplot2 geom and passing it.)
### Collective geoms
Overriding `draw_panel()` is most appropriate if there is one graphic element per row. In other cases, you want graphic element per group. For example, take polygons: each row gives one vertex of a polygon. In this case, you should instead override `draw_group()`:
The following code makes a simplified version of `GeomPolygon`:
```{r}
GeomSimplePolygon <- ggproto("GeomPolygon", Geom,
required_aes = c("x", "y"),
default_aes = aes(
colour = NA, fill = "grey20", size = 0.5,
linetype = 1, alpha = 1
),
draw_key = draw_key_polygon,
draw_group = function(data, panel_scales, coord) {
n <- nrow(data)
if (n <= 2) return(grid::nullGrob())
coords <- coord$transform(data, panel_scales)
# A polygon can only have a single colour, fill, etc, so take from first row
first_row <- coords[1, , drop = FALSE]
grid::polygonGrob(
coords$x, coords$y,
default.units = "native",
gp = grid::gpar(
col = first_row$colour,
fill = scales::alpha(first_row$fill, first_row$alpha),
lwd = first_row$size * .pt,
lty = first_row$linetype
)
)
}
)
geom_simple_polygon <- function(mapping = NULL, data = NULL, stat = "chull",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
geom = GeomSimplePolygon, mapping = mapping, data = data, stat = stat,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_simple_polygon(aes(colour = class), fill = NA)
```
There are a few things to note here:
* We override `draw_group()` instead of `draw_layer()` because we want
one polygon per group, not one polygon per row. If you look at the source
code for the original `GeomPolygon` you'll see it actually overrides
`geom_layer()` because it uses some tricks to make `polygonGrob()` produce
multiple polygons in one call. This is considerably more complicated, but
gives better performance.
* If the data contains two or fewer points, there's no point trying to draw
a polygon, so we return a `nullGrob()`. This is the graphical equivalent
of `NULL`: it's a grob that doesn't draw anything and doesn't take up
any space.
* Note the units: `x` and `y` should always be drawn in "native" units.
(The default units for `pointGrob()` is a native, so we didn't need to
change it there). `lwd` is measured in points, but ggplot2 uses mm,
so we need to multiply it by the adjustment factor `.pt`.
### Inheriting from an existing Geom
Sometimes you just want to make a small modification to an existing geom. In this case, rather than inheriting from `Geom` you can inherit from an existing subclass. For example, we might want to change the defaults for `GeomPolygon` to work better with `StatChull`:
```{r}
GeomPolygonHollow <- ggproto("GeomPolygonHollow", GeomPolygon,
default_aes = aes(colour = "black", fill = NA, size = 0.5, linetype = 1,
alpha = NA)
)
geom_chull <- function(mapping = NULL, data = NULL,
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
stat = StatChull, geom = GeomPolygonHollow, data = data, mapping = mapping,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_chull()
```
This doesn't allow you to use different geoms with the stat, but that seems appropriate here since the convex hull is primarily a polygonal feature.
### Exercises
1. Compare and contrast `GeomPoint` with `GeomSimplePoint`.
1. Compare and contract `GeomPolygon` with `GeomSimplePolygon`.
## Creating your own theme
If you're going to create your own complete theme, there are a few things you need to know:
* Overriding existing elements, rather than modifying them
* The four global elements that affect (almost) every other theme element
* Complete vs. incomplete elements
### Overriding elements
By default, when you add a new theme element, it inherits values from the existing theme. For example, the following code sets the key colour to red, but it inherits the existing fill colour:
```{r}
theme_grey()$legend.key
new_theme <- theme_grey() + theme(legend.key = element_rect(colour = "red"))
new_theme$legend.key
```
To override it completely, use `%+replace%` instead of `+`:
```{r}
new_theme <- theme_grey() %+replace% theme(legend.key = element_rect(colour = "red"))
new_theme$legend.key
```
### Global elements
There are four elements that affect the global appearance of the plot:
Element | Theme function | Description
-------------|-------------------|------------------------
line | `element_line()` | all line elements
rect | `element_rect()` | all rectangular elements
text | `element_text()` | all text
title | `element_text()` | all text in title elements (plot, axes & legend)
These set default properties that are inherited by more specific settings. These are most useful for setting an overall "background" colour and overall font settings (e.g. family and size).
```{r axis-line-ex}
df <- data.frame(x = 1:3, y = 1:3)
base <- ggplot(df, aes(x, y)) +
geom_point() +
theme_minimal()
base
base + theme(text = element_text(colour = "red"))
```
You should generally start creating a theme by modifying these values.
### Complete vs incomplete
It is useful to understand the difference between complete and incomplete theme objects. A *complete* theme object is one produced by calling a theme function with the attribute `complete = TRUE`.
Theme functions `theme_grey()` and `theme_bw()` are examples of complete theme functions. Calls to `theme()` produce *incomplete* theme objects, since they represent (local) modifications to a theme object rather than returning a complete theme object per se. When adding an incomplete theme to a complete one, the result is a complete theme.
Complete and incomplete themes behave somewhat differently when added to a ggplot object:
* Adding an incomplete theme augments the current theme object, replacing only
those properties of elements defined in the call to `theme()`.
* Adding a complete theme wipes away the existing theme and applies the new theme.