-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboston1.py
39 lines (30 loc) · 1.12 KB
/
boston1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# This code is supporting material for the book
# Building Machine Learning Systems with Python
# by Willi Richert and Luis Pedro Coelho
# published by PACKT Publishing
#
# It is made available under the MIT License
# This script shows an example of simple (ordinary) linear regression
# The first edition of the book NumPy functions only for this operation. See
# the file boston1numpy.py for that version.
import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from matplotlib import pyplot as plt
boston = load_boston()
x = boston.data
y = boston.target
# Fitting a model is trivial: call the ``fit`` method in LinearRegression:
lr = LinearRegression()
lr.fit(x, y)
# The instance member `residues_` contains the sum of the squared residues
rmse = np.sqrt(lr.residues_/len(x))
print('RMSE: {}'.format(rmse))
fig, ax = plt.subplots()
# Plot a diagonal (for reference):
ax.plot([0, 50], [0, 50], '-', color=(.9,.3,.3), lw=4)
# Plot the prediction versus real:
ax.scatter(lr.predict(x), boston.target)
ax.set_xlabel('predicted')
ax.set_ylabel('real')
fig.savefig('Figure_07_08.png')