-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure4.py
33 lines (27 loc) · 923 Bytes
/
figure4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# This code is supporting material for the book
# Building Machine Learning Systems with Python
# by Willi Richert and Luis Pedro Coelho
# published by PACKT Publishing
#
# It is made available under the MIT License
# This script plots prediction-vs-actual on training set for the Boston dataset
# using OLS regression
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
from matplotlib import pyplot as plt
boston = load_boston()
x = boston.data
y = boston.target
lr = LinearRegression()
lr.fit(x, y)
p = lr.predict(x)
print("RMSE: {:.2}.".format(np.sqrt(mean_squared_error(y, p))))
print("R2: {:.2}.".format(lr.score(x, y)))
fig,ax = plt.subplots()
ax.scatter(p, y)
ax.set_xlabel('Predicted price')
ax.set_ylabel('Actual price')
ax.plot([y.min(), y.max()], [y.min(), y.max()], lw=4)
fig.savefig('Figure4.png')