forked from Xinyu-Yi/PIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
208 lines (171 loc) · 8.58 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import tqdm
from config import *
from utils import *
import os
import numpy as np
import shutil
import matplotlib.pyplot as plt
import articulate as art
from articulate.utils.rbdl import *
from net import PIP
torch.set_printoptions(sci_mode=False)
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = 'Times New Roman'
plt.figure(dpi=200)
plt.grid(linestyle='-.')
plt.xlabel('Real travelled distance (m)', fontsize=16)
plt.ylabel('Mean translation error (m)', fontsize=16)
plt.title('Cumulative Translation Error', fontsize=18)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class ReducedPoseEvaluator:
names = ['SIP Error (deg)', 'Angle Error (deg)', 'Joint Error (cm)', 'Vertex Error (cm)', 'Jitter Error (km/s^3)']
def __init__(self):
self._base_motion_loss_fn = art.FullMotionEvaluator(paths.smpl_file, joint_mask=torch.tensor([1, 2, 16, 17]), device=device)
self.ignored_joint_mask = torch.tensor([0, 7, 8, 10, 11, 20, 21, 22, 23])
def __call__(self, pose_p, pose_t, tran_p, tran_t):
pose_p = pose_p.clone().view(-1, 24, 3, 3)
pose_t = pose_t.clone().view(-1, 24, 3, 3)
pose_p[:, self.ignored_joint_mask] = torch.eye(3, device=pose_p.device)
pose_t[:, self.ignored_joint_mask] = torch.eye(3, device=pose_t.device)
errs = self._base_motion_loss_fn(pose_p=pose_p, pose_t=pose_t)
return torch.stack([errs[9], errs[3], errs[0] * 100, errs[1] * 100, errs[4] / 1000])
class FullPoseEvaluator:
names = ['Absolute Jitter Error (km/s^3)']
def __init__(self):
self._base_motion_loss_fn = art.FullMotionEvaluator(paths.smpl_file, device=device)
def __call__(self, pose_p, pose_t, tran_p, tran_t):
# errs = self._base_motion_loss_fn(pose_p=pose_p[:-1], pose_t=pose_t[:-1], tran_p=tran_p[:-1], tran_t=tran_t[:-1]) # bad data -1
errs = self._base_motion_loss_fn(pose_p=pose_p, pose_t=pose_t, tran_p=tran_p, tran_t=tran_t)
return torch.stack([errs[4] / 1000])
def evaluate_zmp_distance(poses, trans, fps=60, foot_radius=0.1):
qs = smpl_to_rbdl(poses, trans)
qdots = np.empty_like(qs)
qdots[1:, :3] = (qs[1:, :3] - qs[:-1, :3]) * fps
qdots[1:, 3:] = art.math.angle_difference(qs[1:, 3:], qs[:-1, 3:]) * fps
qdots[0] = qdots[1]
qddots = (qdots[1:] - qdots[:-1]) * fps
qddots = np.concatenate((qddots[:1], qddots))
rbdl_model = RBDLModel(paths.physics_model_file)
floor_height = []
for q in qs[2:30]:
lp = rbdl_model.calc_body_position(q, Body.LFOOT)
rp = rbdl_model.calc_body_position(q, Body.RFOOT)
floor_height.append(lp[1])
floor_height.append(rp[1])
floor_height = torch.tensor(floor_height).mean() + 0.01
dists = []
for q, qdot, qddot in zip(qs, qdots, qddots):
lp = rbdl_model.calc_body_position(q, Body.LFOOT)
rp = rbdl_model.calc_body_position(q, Body.RFOOT)
if lp[1] > floor_height and rp[1] > floor_height:
continue
zmp = rbdl_model.calc_zero_moment_point(q, qdot, qddot)
ap = (zmp - lp)[[0, 2]]
ab = (rp - lp)[[0, 2]]
bp = (zmp - rp)[[0, 2]]
if lp[1] <= floor_height and rp[1] <= floor_height:
# point to line segment distance
r = (ap * ab).sum() / (ab * ab).sum()
if r < 0:
d = np.linalg.norm(ap)
elif r > 1:
d = np.linalg.norm(bp)
else:
d = np.sqrt((ap * ap).sum() - r * r * (ab * ab).sum())
else:
# point to point distance
d = np.linalg.norm(ap if lp[1] <= floor_height else bp)
dists.append(max(d - foot_radius, 0))
return sum(dists) / len(dists)
def run_pipeline(net, data_dir, sequence_ids=None):
r"""
Run `net` using the imu data loaded from `data_dir`.
Save the estimated [Pose[num_frames, 24, 3, 3], Tran[num_frames, 3]] for each of `sequence_ids`.
"""
print('Loading imu data from "%s"' % data_dir)
accs, rots, poses, _ = torch.load(os.path.join(data_dir, 'test.pt')).values()
init_poses = [art.math.axis_angle_to_rotation_matrix(_[0]) for _ in poses]
data_name = os.path.basename(data_dir)
output_dir = os.path.join(paths.result_dir, data_name, net.name)
os.makedirs(output_dir, exist_ok=True)
if sequence_ids is None:
sequence_ids = list(range(len(accs)))
print('Saving the results at "%s"' % output_dir)
for i in tqdm.tqdm(sequence_ids):
torch.save(net.predict(accs[i], rots[i], init_poses[i]), os.path.join(output_dir, '%d.pt' % i))
def evaluate(net, data_dir, sequence_ids=None, flush_cache=False, pose_evaluator=ReducedPoseEvaluator(),
evaluate_pose=False, evaluate_tran=False, evaluate_zmp=False):
r"""
Evaluate poses and translations of `net` on all sequences in `sequence_ids` from `data_dir`.
`net` should implement `net.name` and `net.predict(glb_acc, glb_rot)`.
"""
data_name = os.path.basename(data_dir)
result_dir = os.path.join(paths.result_dir, data_name, net.name)
print_title('Evaluating "%s" on "%s"' % (net.name, data_name))
_, _, pose_t_all, tran_t_all = torch.load(os.path.join(data_dir, 'test.pt')).values()
if sequence_ids is None:
sequence_ids = list(range(len(pose_t_all)))
if flush_cache and os.path.exists(result_dir):
shutil.rmtree(result_dir)
missing_ids = [i for i in sequence_ids if not os.path.exists(os.path.join(result_dir, '%d.pt' % i))]
cached_ids = [i for i in sequence_ids if os.path.exists(os.path.join(result_dir, '%d.pt' % i))]
print('Cached ids: %s\nMissing ids: %s' % (cached_ids, missing_ids))
if len(missing_ids) > 0:
run_pipeline(net, data_dir, missing_ids)
pose_errors = []
tran_errors = {window_size: [] for window_size in list(range(1, 8))}
zmp_errors = []
for i in tqdm.tqdm(sequence_ids):
result = torch.load(os.path.join(result_dir, '%d.pt' % i))
pose_p, tran_p = result[0], result[1]
pose_t, tran_t = pose_t_all[i], tran_t_all[i]
if evaluate_pose:
pose_t = art.math.axis_angle_to_rotation_matrix(pose_t).view_as(pose_p)
pose_errors.append(pose_evaluator(pose_p, pose_t, tran_p, tran_t))
if evaluate_tran:
# compute gt move distance at every frame
move_distance_t = torch.zeros(tran_t.shape[0])
v = (tran_t[1:] - tran_t[:-1]).norm(dim=1)
for j in range(len(v)):
move_distance_t[j + 1] = move_distance_t[j] + v[j]
for window_size in tran_errors.keys():
# find all pairs of start/end frames where gt moves `window_size` meters
frame_pairs = []
start, end = 0, 1
while end < len(move_distance_t):
if move_distance_t[end] - move_distance_t[start] < window_size:
end += 1
else:
if len(frame_pairs) == 0 or frame_pairs[-1][1] != end:
frame_pairs.append((start, end))
start += 1
# calculate mean distance error
errs = []
for start, end in frame_pairs:
vel_p = tran_p[end] - tran_p[start]
vel_t = tran_t[end] - tran_t[start]
errs.append((vel_t - vel_p).norm() / (move_distance_t[end] - move_distance_t[start]) * window_size)
if len(errs) > 0:
tran_errors[window_size].append(sum(errs) / len(errs))
if evaluate_zmp:
zmp_errors.append(evaluate_zmp_distance(pose_p, tran_p))
if evaluate_pose:
pose_errors = torch.stack(pose_errors).mean(dim=0)
for name, error in zip(pose_evaluator.names, pose_errors):
print('%s: %.4f' % (name, error[0]))
if evaluate_zmp:
print('ZMP Distance (m): %.4f' % (sum(zmp_errors) / len(zmp_errors)))
if evaluate_tran:
plt.plot([0] + [_ for _ in tran_errors.keys()], [0] + [torch.tensor(_).mean() for _ in tran_errors.values()], label=net.name)
plt.legend(fontsize=15)
plt.show()
if __name__ == '__main__':
net = PIP()
reduced_pose_evaluator = ReducedPoseEvaluator()
full_pose_evaluator = FullPoseEvaluator()
# Note: to evaluate Absolute Jitter Error, use full_pose_evaluator
print('\n')
evaluate(net, paths.totalcapture_dir, pose_evaluator=reduced_pose_evaluator, evaluate_pose=True, evaluate_tran=True, evaluate_zmp=True, flush_cache=False)
print('\n')
evaluate(net, paths.dipimu_dir, pose_evaluator=reduced_pose_evaluator, evaluate_pose=True, evaluate_zmp=True, flush_cache=False)