forked from snuspl/nimble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_utils.py
889 lines (755 loc) · 32.6 KB
/
common_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.
common_cuda.py can freely initialize CUDA context when imported.
"""
import sys
import os
import platform
import re
import gc
import types
import inspect
import argparse
import unittest
import warnings
import random
import contextlib
import socket
import time
from collections import OrderedDict
from functools import wraps
from itertools import product
from copy import deepcopy
from numbers import Number
import __main__
import errno
import expecttest
import hashlib
import torch
import torch.cuda
from torch._utils_internal import get_writable_path
from torch._six import string_classes, inf
import torch.backends.cudnn
import torch.backends.mkl
torch.set_default_tensor_type('torch.DoubleTensor')
torch.backends.cudnn.disable_global_flags()
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
SEED = args.seed
if not expecttest.ACCEPT:
expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)
def run_tests(argv=UNITTEST_ARGS):
unittest.main(argv=argv)
PY3 = sys.version_info > (3, 0)
PY34 = sys.version_info >= (3, 4)
IS_WINDOWS = sys.platform == "win32"
IS_PPC = platform.machine() == "ppc64le"
def _check_module_exists(name):
r"""Returns if a top-level module with :attr:`name` exists *without**
importing it. This is generally safer than try-catch block around a
`import X`. It avoids third party libraries breaking assumptions of some of
our tests, e.g., setting multiprocessing start method when imported
(see librosa/#747, torchvision/#544).
"""
if not PY3: # Python 2
import imp
try:
imp.find_module(name)
return True
except ImportError:
return False
elif not PY34: # Python [3, 3.4)
import importlib
loader = importlib.find_loader(name)
return loader is not None
else: # Python >= 3.4
import importlib
import importlib.util
spec = importlib.util.find_spec(name)
return spec is not None
TEST_NUMPY = _check_module_exists('numpy')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_NUMBA = _check_module_exists('numba')
# On Py2, importing librosa 0.6.1 triggers a TypeError (if using newest joblib)
# see librosa/librosa#729.
# TODO: allow Py2 when librosa 0.6.2 releases
TEST_LIBROSA = _check_module_exists('librosa') and PY3
# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1' or sys.version_info[0] == 2
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'
if TEST_NUMPY:
import numpy
def skipIfRocm(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_ROCM:
raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoLapack(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch._C.has_lapack:
raise unittest.SkipTest('PyTorch compiled without Lapack')
else:
fn(*args, **kwargs)
return wrapper
def skipCUDAMemoryLeakCheckIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True
fn._do_cuda_memory_leak_check = not condition
return fn
return dec
def suppress_warnings(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fn(*args, **kwargs)
return wrapper
def get_cpu_type(type_name):
module, name = type_name.rsplit('.', 1)
assert module == 'torch.cuda'
return getattr(torch, name)
def get_gpu_type(type_name):
if isinstance(type_name, type):
type_name = '{}.{}'.format(type_name.__module__, type_name.__name__)
module, name = type_name.rsplit('.', 1)
assert module == 'torch'
return getattr(torch.cuda, name)
def to_gpu(obj, type_map={}):
if isinstance(obj, torch.Tensor):
assert obj.is_leaf
t = type_map.get(obj.type(), get_gpu_type(obj.type()))
with torch.no_grad():
res = obj.clone().type(t)
res.requires_grad = obj.requires_grad
return res
elif torch.is_storage(obj):
return obj.new().resize_(obj.size()).copy_(obj)
elif isinstance(obj, list):
return [to_gpu(o, type_map) for o in obj]
elif isinstance(obj, tuple):
return tuple(to_gpu(o, type_map) for o in obj)
else:
return deepcopy(obj)
def get_function_arglist(func):
if sys.version_info > (3,):
return inspect.getfullargspec(func).args
else:
return inspect.getargspec(func).args
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
if TEST_NUMPY:
numpy.random.seed(seed)
@contextlib.contextmanager
def freeze_rng_state():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
yield
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
def iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return product(*(range(s) for s in tensor.size()))
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
class CudaMemoryLeakCheck():
def __init__(self, testcase, name=None):
self.name = testcase.id() if name is None else name
self.testcase = testcase
# initialize context & RNG to prevent false positive detections
# when the test is the first to initialize those
from common_cuda import initialize_cuda_context_rng
initialize_cuda_context_rng()
@staticmethod
def get_cuda_memory_usage():
# we don't need CUDA synchronize because the statistics are not tracked at
# actual freeing, but at when marking the block as free.
num_devices = torch.cuda.device_count()
gc.collect()
return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices))
def __enter__(self):
self.befores = self.get_cuda_memory_usage()
def __exit__(self, exec_type, exec_value, traceback):
# Don't check for leaks if an exception was thrown
if exec_type is not None:
return
afters = self.get_cuda_memory_usage()
for i, (before, after) in enumerate(zip(self.befores, afters)):
if not TEST_WITH_ROCM:
self.testcase.assertEqual(
before, after, '{} leaked {} bytes CUDA memory on device {}'.format(
self.name, after - before, i))
else:
# TODO: Investigate ROCm memory leaking.
if before != after:
warnings.warn('{} leaked {} bytes ROCm memory on device {}'.format(
self.name, after - before, i), RuntimeWarning)
class TestCase(expecttest.TestCase):
precision = 1e-5
maxDiff = None
_do_cuda_memory_leak_check = False
def __init__(self, method_name='runTest'):
super(TestCase, self).__init__(method_name)
# Wraps the tested method if we should do CUDA memory check.
test_method = getattr(self, method_name)
self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
# FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
if self._do_cuda_memory_leak_check and not IS_WINDOWS:
# the import below may initialize CUDA context, so we do it only if
# self._do_cuda_memory_leak_check is True.
from common_cuda import TEST_CUDA
fullname = self.id().lower() # class_name.method_name
if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
setattr(self, method_name, self.wrap_with_cuda_memory_check(test_method))
def assertLeaksNoCudaTensors(self, name=None):
name = self.id() if name is None else name
return CudaMemoryLeakCheck(self, name)
def wrap_with_cuda_memory_check(self, method):
# Assumes that `method` is the tested function in `self`.
# NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
# alive, so this cannot be done in setUp and tearDown because
# tearDown is run unconditionally no matter whether the test
# passes or not. For the same reason, we can't wrap the `method`
# call in try-finally and always do the check.
@wraps(method)
def wrapper(self, *args, **kwargs):
with self.assertLeaksNoCudaTensors():
method(*args, **kwargs)
return types.MethodType(wrapper, self)
def setUp(self):
set_rng_seed(SEED)
def assertTensorsSlowEqual(self, x, y, prec=None, message=''):
max_err = 0
self.assertEqual(x.size(), y.size())
for index in iter_indices(x):
max_err = max(max_err, abs(x[index] - y[index]))
self.assertLessEqual(max_err, prec, message)
def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device='cpu'):
# Assert not given impossible combination, where the sparse dims have
# empty numel, but nnz > 0 makes the indices containing values.
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
v_size = [nnz] + list(size[sparse_dim:])
v = torch.randn(*v_size, device=device)
i = torch.rand(sparse_dim, nnz, device=device)
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
i = i.to(torch.long)
if is_uncoalesced:
v = torch.cat([v, torch.randn_like(v)], 0)
i = torch.cat([i, i], 1)
x = torch.sparse_coo_tensor(i, v, torch.Size(size))
if not is_uncoalesced:
x = x.coalesce()
else:
# FIXME: `x` is a sparse view of `v`. Currently rebase_history for
# sparse views is not implemented, so this workaround is
# needed for inplace operations done on `x`, e.g., copy_().
# Remove after implementing something equivalent to CopySlice
# for sparse views.
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
x = x.detach().clone()
return x, x._indices().clone(), x._values().clone()
def safeToDense(self, t):
r = self.safeCoalesce(t)
return r.to_dense()
def safeCoalesce(self, t):
tc = t.coalesce()
self.assertEqual(tc.to_dense(), t.to_dense())
self.assertTrue(tc.is_coalesced())
# Our code below doesn't work when nnz is 0, because
# then it's a 0D tensor, not a 2D tensor.
if t._nnz() == 0:
self.assertEqual(t._indices(), tc._indices())
self.assertEqual(t._values(), tc._values())
return tc
value_map = {}
for idx, val in zip(t._indices().t(), t._values()):
idx_tup = tuple(idx.tolist())
if idx_tup in value_map:
value_map[idx_tup] += val
else:
value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val
new_indices = sorted(list(value_map.keys()))
new_values = [value_map[idx] for idx in new_indices]
if t._values().ndimension() < 2:
new_values = t._values().new(new_values)
else:
new_values = torch.stack(new_values)
new_indices = t._indices().new(new_indices).t()
tg = t.new(new_indices, new_values, t.size())
self.assertEqual(tc._indices(), tg._indices())
self.assertEqual(tc._values(), tg._values())
if t.is_coalesced():
self.assertEqual(tc._indices(), t._indices())
self.assertEqual(tc._values(), t._values())
return tg
def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
if isinstance(prec, str) and message == '':
message = prec
prec = None
if prec is None:
prec = self.precision
if isinstance(x, torch.Tensor) and isinstance(y, Number):
self.assertEqual(x.item(), y, prec, message, allow_inf)
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
self.assertEqual(x, y.item(), prec, message, allow_inf)
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
def assertTensorsEqual(a, b):
super(TestCase, self).assertEqual(a.size(), b.size(), message)
if a.numel() > 0:
b = b.type_as(a)
b = b.cuda(device=a.get_device()) if a.is_cuda else b.cpu()
# check that NaNs are in the same locations
nan_mask = a != a
self.assertTrue(torch.equal(nan_mask, b != b), message)
diff = a - b
diff[nan_mask] = 0
# inf check if allow_inf=True
if allow_inf:
inf_mask = (a == float("inf")) | (a == float("-inf"))
self.assertTrue(torch.equal(inf_mask,
(b == float("inf")) | (b == float("-inf"))),
message)
diff[inf_mask] = 0
# TODO: implement abs on CharTensor
if diff.is_signed() and 'CharTensor' not in diff.type():
diff = diff.abs()
max_err = diff.max()
self.assertLessEqual(max_err, prec, message)
super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
if x.is_sparse:
x = self.safeCoalesce(x)
y = self.safeCoalesce(y)
assertTensorsEqual(x._indices(), y._indices())
assertTensorsEqual(x._values(), y._values())
else:
assertTensorsEqual(x, y)
elif isinstance(x, string_classes) and isinstance(y, string_classes):
super(TestCase, self).assertEqual(x, y, message)
elif type(x) == set and type(y) == set:
super(TestCase, self).assertEqual(x, y, message)
elif isinstance(x, dict) and isinstance(y, dict):
if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
self.assertEqual(x.items(), y.items())
else:
self.assertEqual(set(x.keys()), set(y.keys()))
key_list = list(x.keys())
self.assertEqual([x[k] for k in key_list], [y[k] for k in key_list])
elif is_iterable(x) and is_iterable(y):
super(TestCase, self).assertEqual(len(x), len(y), message)
for x_, y_ in zip(x, y):
self.assertEqual(x_, y_, prec, message)
elif isinstance(x, bool) and isinstance(y, bool):
super(TestCase, self).assertEqual(x, y, message)
elif isinstance(x, Number) and isinstance(y, Number):
if abs(x) == inf or abs(y) == inf:
if allow_inf:
super(TestCase, self).assertEqual(x, y, message)
else:
self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
return
super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
else:
super(TestCase, self).assertEqual(x, y, message)
def assertAlmostEqual(self, x, y, places=None, msg=None, delta=None, allow_inf=None):
prec = delta
if places:
prec = 10**(-places)
self.assertEqual(x, y, prec, msg, allow_inf)
def assertNotEqual(self, x, y, prec=None, message=''):
if isinstance(prec, str) and message == '':
message = prec
prec = None
if prec is None:
prec = self.precision
if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
if x.size() != y.size():
super(TestCase, self).assertNotEqual(x.size(), y.size())
self.assertGreater(x.numel(), 0)
y = y.type_as(x)
y = y.cuda(device=x.get_device()) if x.is_cuda else y.cpu()
nan_mask = x != x
if torch.equal(nan_mask, y != y):
diff = x - y
if diff.is_signed():
diff = diff.abs()
diff[nan_mask] = 0
max_err = diff.max()
self.assertGreaterEqual(max_err, prec, message)
elif type(x) == str and type(y) == str:
super(TestCase, self).assertNotEqual(x, y)
elif is_iterable(x) and is_iterable(y):
super(TestCase, self).assertNotEqual(x, y)
else:
try:
self.assertGreaterEqual(abs(x - y), prec, message)
return
except (TypeError, AssertionError):
pass
super(TestCase, self).assertNotEqual(x, y, message)
def assertObjectIn(self, obj, iterable):
for elem in iterable:
if id(obj) == id(elem):
return
raise AssertionError("object not found in iterable")
# TODO: Support context manager interface
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
# If you need it, manually apply your callable in a lambda instead.
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
subname = None
if 'subname' in kwargs:
subname = kwargs['subname']
del kwargs['subname']
try:
callable(*args, **kwargs)
except exc_type as e:
self.assertExpected(str(e), subname)
return
# Don't put this in the try block; the AssertionError will catch it
self.fail(msg="Did not raise when expected to")
def assertWarns(self, callable, msg=''):
r"""
Test if :attr:`callable` raises a warning.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
callable()
self.assertTrue(len(ws) > 0, msg)
def assertWarnsRegex(self, callable, regex, msg=''):
r"""
Test if :attr:`callable` raises any warning with message that contains
the regex pattern :attr:`regex`.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
callable()
self.assertTrue(len(ws) > 0, msg)
found = any(re.search(regex, str(w.message)) is not None for w in ws)
self.assertTrue(found, msg)
def assertExpected(self, s, subname=None):
r"""
Test that a string matches the recorded contents of a file
derived from the name of this test and subname. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
"""
if not (isinstance(s, str) or (sys.version_info[0] == 2 and isinstance(s, unicode))):
raise TypeError("assertExpected is strings only")
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives. This doesn't matter in
# PyTorch where all test scripts are in the same directory as
# test/common_utils.py, but it matters in onnx-pytorch
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
subname_output = ""
if subname:
expected_file += "-" + subname
subname_output = " ({})".format(subname)
expected_file += ".expect"
expected = None
def accept_output(update_type):
print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
with open(expected_file, 'w') as f:
f.write(s)
try:
with open(expected_file) as f:
expected = f.read()
except IOError as e:
if e.errno != errno.ENOENT:
raise
elif expecttest.ACCEPT:
return accept_output("output")
else:
raise RuntimeError(
("I got this output for {}{}:\n\n{}\n\n"
"No expect file exists; to accept the current output, run:\n"
"python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id))
# a hack for JIT tests
if IS_WINDOWS:
expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)
if expecttest.ACCEPT:
if expected != s:
return accept_output("updated output")
else:
if hasattr(self, "assertMultiLineEqual"):
# Python 2.7 only
# NB: Python considers lhs "old" and rhs "new".
self.assertMultiLineEqual(expected, s)
else:
self.assertEqual(s, expected)
if sys.version_info < (3, 2):
# assertRegexpMatches renamed to assertRegex in 3.2
assertRegex = unittest.TestCase.assertRegexpMatches
# assertRaisesRegexp renamed to assertRaisesRegex in 3.2
assertRaisesRegex = unittest.TestCase.assertRaisesRegexp
def download_file(url, binary=True):
if sys.version_info < (3,):
from urlparse import urlsplit
import urllib2
request = urllib2
error = urllib2
else:
from urllib.parse import urlsplit
from urllib import request, error
filename = os.path.basename(urlsplit(url)[2])
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
path = os.path.join(data_dir, filename)
if os.path.exists(path):
return path
try:
data = request.urlopen(url, timeout=15).read()
with open(path, 'wb' if binary else 'w') as f:
f.write(data)
return path
except error.URLError:
msg = "could not download test file '{}'".format(url)
warnings.warn(msg, RuntimeWarning)
raise unittest.SkipTest(msg)
def find_free_port():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('localhost', 0))
sockname = sock.getsockname()
sock.close()
return sockname[1]
def retry_on_address_already_in_use_error(func):
"""Reruns a test if it sees "Address already in use" error."""
@wraps(func)
def wrapper(*args, **kwargs):
tries_remaining = 10
while True:
try:
return func(*args, **kwargs)
except RuntimeError as error:
if str(error) == "Address already in use":
tries_remaining -= 1
if tries_remaining == 0:
raise
time.sleep(random.random())
continue
raise
return wrapper
# Methods for matrix generation
# Used in test_autograd.py and test_torch.py
def prod_single_zero(dim_size):
result = torch.randn(dim_size, dim_size)
result[0, 1] = 0
return result
def random_square_matrix_of_rank(l, rank):
assert rank <= l
A = torch.randn(l, l)
u, s, v = A.svd()
for i in range(l):
if i >= rank:
s[i] = 0
elif s[i] == 0:
s[i] = 1
return u.mm(torch.diag(s)).mm(v.transpose(0, 1))
def random_symmetric_matrix(l):
A = torch.randn(l, l)
for i in range(l):
for j in range(i):
A[i, j] = A[j, i]
return A
def random_symmetric_psd_matrix(l):
A = torch.randn(l, l)
return A.mm(A.transpose(0, 1))
def random_symmetric_pd_matrix(l, *batches):
A = torch.randn(*(batches + (l, l)))
return A.matmul(A.transpose(-2, -1)) + torch.eye(l) * 1e-5
def make_nonzero_det(A, sign=None, min_singular_value=0.1):
u, s, v = A.svd()
s[s < min_singular_value] = min_singular_value
A = u.mm(torch.diag(s)).mm(v.t())
det = A.det().item()
if sign is not None:
if (det < 0) ^ (sign < 0):
A[0, :].neg_()
return A
def random_fullrank_matrix_distinct_singular_value(l, *batches, **kwargs):
silent = kwargs.get("silent", False)
if silent and not torch._C.has_lapack:
return torch.ones(l, l)
if len(batches) == 0:
A = torch.randn(l, l)
u, _, v = A.svd()
s = torch.arange(1., l + 1).mul_(1.0 / (l + 1))
return u.mm(torch.diag(s)).mm(v.t())
else:
all_matrices = []
for _ in range(0, torch.prod(torch.as_tensor(batches)).item()):
A = torch.randn(l, l)
u, _, v = A.svd()
s = torch.arange(1., l + 1).mul_(1.0 / (l + 1))
all_matrices.append(u.mm(torch.diag(s)).mm(v.t()))
return torch.stack(all_matrices).reshape(*(batches + (l, l)))
def brute_pdist(inp, p=2):
"""Computes the same as torch.pdist using primitives"""
n = inp.shape[-2]
k = n * (n - 1) // 2
if k == 0:
# torch complains about empty indices
return torch.empty(inp.shape[:-2] + (0,), device=inp.device)
square = torch.norm(inp[..., None, :] - inp[..., None, :, :], p=p, dim=-1)
unroll = square.view(square.shape[:-2] + (n * n,))
inds = torch.ones(k, dtype=torch.int)
inds[torch.arange(n - 1, 1, -1, dtype=torch.int).cumsum(0)] += torch.arange(2, n, dtype=torch.int)
return unroll[..., inds.cumsum(0)]
def do_test_dtypes(self, dtypes, layout, device):
for dtype in dtypes:
if dtype != torch.float16:
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
self.assertIs(dtype, out.dtype)
self.assertIs(layout, out.layout)
self.assertEqual(device, out.device)
def do_test_empty_full(self, dtypes, layout, device):
shape = torch.Size([2, 3])
def check_value(tensor, dtype, layout, device, value, requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device is not None:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.new(shape).fill_(value)
self.assertEqual(tensor, fill)
def get_int64_dtype(dtype):
module = '.'.join(str(dtype).split('.')[1:-1])
if not module:
return torch.int64
return operator.attrgetter(module)(torch).int64
default_dtype = torch.get_default_dtype()
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
check_value(torch.full(shape, -5), default_dtype, torch.strided, -1, None, False)
for dtype in dtypes:
for rg in {dtype.is_floating_point, False}:
int64_dtype = get_int64_dtype(dtype)
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
check_value(v, dtype, layout, device, None, rg)
out = v.new()
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, None, rg)
check_value(v.new_empty(shape), dtype, layout, device, None, False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
check_value(torch.empty_like(v), dtype, layout, device, None, False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
if dtype is not torch.float16 and layout != torch.sparse_coo:
fv = 3
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
check_value(v, dtype, layout, device, fv, rg)
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
out = v.new()
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, fv + 2, rg)
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 3, False)
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
check_value(torch.full_like(v, fv + 5,
dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 5, False)
IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
THESE_TAKE_WAY_TOO_LONG = {
'test_Conv3d_groups',
'test_conv_double_backward_groups',
'test_Conv3d_dilated',
'test_Conv3d_stride_padding',
'test_Conv3d_dilated_strided',
'test_Conv3d',
'test_Conv2d_dilated',
'test_ConvTranspose3d_dilated',
'test_ConvTranspose2d_dilated',
'test_snli',
'test_Conv2d',
'test_Conv2d_padding',
'test_ConvTranspose2d_no_bias',
'test_ConvTranspose2d',
'test_ConvTranspose3d',
'test_Conv2d_no_bias',
'test_matmul_4d_4d',
'test_multinomial_invalid_probs',
}
running_script_path = None
def set_running_script_path():
global running_script_path
try:
running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
if running_file.endswith('.py'): # skip if the running file is not a script
running_script_path = running_file
except Exception:
pass
def check_test_defined_in_running_script(test_case):
if running_script_path is None:
return
if TEST_WITH_ROCM:
# In ROCm CI, to avoid forking after HIP is initialized, we
# indeed load test module from test/run_test.py and run all
# tests in the same process.
return
test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
"is not defined in the running script \"{}\", but in \"{}\". Did you " \
"accidentally import a unittest.TestCase from another file?".format(
test_case.id(), running_script_path, test_case_class_file)
num_shards = os.environ.get('TEST_NUM_SHARDS', None)
shard = os.environ.get('TEST_SHARD', None)
if num_shards is not None and shard is not None:
num_shards = int(num_shards)
shard = int(shard)
def load_tests(loader, tests, pattern):
set_running_script_path()
test_suite = unittest.TestSuite()
for test_group in tests:
for test in test_group:
check_test_defined_in_running_script(test)
name = test.id().split('.')[-1]
if name in THESE_TAKE_WAY_TOO_LONG:
continue
hash_id = int(hashlib.sha256(str(test).encode('utf-8')).hexdigest(), 16)
if hash_id % num_shards == shard:
test_suite.addTest(test)
return test_suite
else:
def load_tests(loader, tests, pattern):
set_running_script_path()
test_suite = unittest.TestSuite()
for test_group in tests:
for test in test_group:
check_test_defined_in_running_script(test)
test_suite.addTest(test)
return test_suite