forked from sccn/eeglab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstd_plotcurve.m
636 lines (596 loc) · 32.4 KB
/
std_plotcurve.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
% std_plotcurve() - plot ERP or spectral traces for a STUDY component
% or channel cluster
% Usage:
% >> std_plotcurve( axvals, data, 'key', 'val', ...)
% Inputs:
% axvals - [vector or cell array] axis values for the data.
% data - [cell array] mean data for each subject group and/or data
% condition. For example, to plot mean ERPs from a STUDY
% for epochs of 800 frames in two conditions from three groups
% of 12 subjects:
%
% >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1
% [800x12] [800x12] [800x12] }; % 3 groups, cond 2
% >> std_plotcurve(erp_ms,data);
%
% By default, parametric statistics are computed across subjects
% in the three groups. (group,condition) ERP averages are plotted.
% See below and >> help statcond
% for more information about the statistical computations. For
% plotting multiple channels, use the second dimension. For
% example data = { [800x64x12] [800x64x12] } for 12 subjects,
% 64 channels and 800 data points. The 'chanlocs' option must be
% used as well to specify channel positions.
%
% Optional display parameters:
% 'datatype' - ['erp'|'spec'] data type {default: 'erp'}
% 'titles' - [cell array of string] titles for each of the subplots.
% { default: none}
%
% Statistics options:
% 'groupstats' - [cell] One p-value array per group {default: {}}
% 'condstats' - [cell] One p-value array per condition {default: {}}
% 'interstats' - [cell] Interaction p-value arrays {default: {}}
% 'threshold' - [NaN|real<<1] Significance threshold. NaN -> plot the
% p-values themselves on a different figure. When possible,
% significance regions are indicated below the data.
% {default: NaN}
%
% Curve plotting options (ERP and spectrum):
% 'plotgroups' - ['together'|'apart'] 'together' -> plot mean results
% for subject groups in the same figure panel in different
% colors. 'apart' -> plot group results on different figure
% panels {default: 'apart'}
% 'plotconditions' - ['together'|'apart'] 'together' -> plot mean results
% for data conditions on the same figure panel in
% different
% colors. 'apart' -> plot conditions on different figure
% panel. Note: 'plotgroups' and 'plotconditions' arguments
% cannot both be 'together' {default: 'apart'}
% 'legend' - ['on'|'off'] turn plot legend on/off {default: 'off'}
% 'colors' - [cell] cell array of colors
% 'plotdiff' - ['on'|'off'] plot difference between two groups
% or conditions plotted together.
% 'plotstderr' - ['on'|'off'|'diff'|'nocurve'|'diffnocurve'] plots in
% a surface indicating the standard error. 'diff' only
% does it for the difference (requires 'plotdiff' 'on'
% above). 'nocurve' does not plot the mean. This functionality
% does not work for all data configuration {default: 'off'}
% 'figure' - ['on'|'off'] creates a new figure ('on'). The 'off' mode
% plots all of the groups and conditions on the same panel.
% 'plotsubjects' - ['on'|'off'] overplot traces for individual components
% or channels {default: 'off'}
% 'singlesubject' - ['on'|'off'] set to 'on' to plot single subject.
% {default: 'off'}
% 'ylim' - [min max] ordinate limits for ERP and spectrum plots
% {default: all available data}
%
% Scalp map plotting options:
% 'chanlocs' - [struct] channel locations structure
%
% Author: Arnaud Delorme, CERCO, CNRS, 2006-
%
% See also: pop_erspparams(), pop_erpparams(), pop_specparams(), statcond()
% Copyright (C) 2006 Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function std_plotcurve(allx, data, varargin)
pgroup = [];
pcond = [];
if nargin < 2
help std_plotcurve;
return;
end
opt = finputcheck( varargin, { 'ylim' 'real' [] [];
'filter' 'real' [] [];
'threshold' 'real' [] NaN;
'unitx' 'string' { 'ms','hz','rmsms','rmshz','hzpsd','rmshzpsd' } 'ms';
'chanlocs' 'struct' [] struct('labels', {});
'plotsubjects' 'string' { 'on','off' } 'off';
'condnames' 'cell' [] {}; % just for legends
'groupnames' 'cell' [] {}; % just for legends
'figtag' 'string' [] 'tmp_curvetag';
'groupstats' 'cell' [] {};
'condstats' 'cell' [] {};
'interstats' 'cell' [] {};
'titles' 'cell' [] {};
'colors' 'cell' [] {};
'figure' 'string' { 'on','off' } 'on';
'effect' 'string' { 'main','marginal' } 'marginal';
'plottopo' 'string' { 'on','off' } 'off';
'plotstderr' 'string' { 'on','off','diff','nocurve' } 'off';
'plotdiff' 'string' { 'on','off' } 'off';
'legend' { 'string','cell' } { { 'on','off' } {} } 'off';
'datatype' 'string' { 'ersp','itc','erp','spec' } 'erp';
'plotgroups' 'string' { 'together','apart' } 'apart';
'plotmode' 'string' { 'test','condensed' } 'test'; % deprecated
'plotconditions' 'string' { 'together','apart' } 'apart' }, 'std_plotcurve');
% opt.figure = 'off'; % test by nima
if ischar(opt), error(opt); end
opt.singlesubject = 'off';
nc = size(data,1);
ng = size(data,2);
if length(opt.chanlocs) > 1, opt.plottopo = 'on'; end
if strcmpi(opt.plottopo, 'on') && size(data{1},3) == 1, opt.singlesubject = 'on'; end
%if size(data{1},2) == 1, opt.singlesubject = 'on'; end
if all(all(cellfun('size', data, 2)==1)) opt.singlesubject = 'on'; end
if any(any(cellfun('size', data, 2)==1)), opt.groupstats = {}; opt.condstats = {}; end
if strcmpi(opt.datatype, 'spec'), opt.unit = 'Hz'; end
if strcmpi(opt.plotsubjects, 'on')
opt.plotgroups = 'apart';
opt.plotconditions = 'apart';
end
if strcmpi(opt.effect, 'main') && nc > 1 && ng > 1 && (~isempty(opt.groupstats) || ~isempty(opt.condstats))
opt.plotgroups = 'apart';
opt.plotconditions = 'apart';
end
if strcmpi(opt.plotconditions, 'together') && ~isempty(opt.groupstats), opt.plotconditions = 'apart'; end
if strcmpi(opt.plotgroups, 'together') && ~isempty(opt.condstats) , opt.plotgroups = 'apart'; end
if ischar(opt.legend), opt.legend = {}; end
if isempty(opt.titles), opt.titles = cell(10,10); opt.titles(:) = { '' }; end
if length(data(:)) == length(opt.legend(:)),
opt.legend = reshape(opt.legend, size(data))';
opt.legend(cellfun(@isempty, data)) = [];
opt.legend = (opt.legend)';
end
% color matrix
% -----------------------
onecol = { 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' };
manycol = { 'b' 'g' 'm' 'c' 'r' 'k' 'y' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' ...
'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' };
modifier = { '-' '--' '-.' ':' '-' '--' '-.' ':' '-' '--' '-.' ':' };
if strcmpi(opt.plotgroups, 'together') || strcmpi(opt.plotconditions, 'together') || strcmpi(opt.figure, 'off')
col = manycol;
else col = onecol;
end
if ~isempty(opt.colors), col = opt.colors; end
nonemptycell = find(~cellfun(@isempty, data));
if strcmpi(opt.plotsubjects, 'off')
% both group and conditions s
if strcmpi(opt.plotconditions, 'together') && strcmpi(opt.plotgroups, 'together')
dim1 = max(size(data));
dim2 = min(size(data));
coldata = col([1:dim1]);
for iRow = 2:dim2
coldata(iRow,:) = coldata(1,:);
for iCol = 1:dim1
coldata{iRow,iCol} = [ coldata{iRow,iCol} modifier{iRow} ];
end
end
if size(coldata,1) ~= size(data,1), coldata = coldata'; end
else
coldata = manycol;
end
while length(coldata) < length(data(:))
coldata = [ coldata coldata ];
end
coldata = reshape(coldata(1:length(data(:))), size(data));
else
coldata = cell(size(data));
end
% Fill empty cells with NaNs (This allow to plot all conditions on the same panel even when there is some missing data)
% --------------------------
if strcmpi(opt.plotconditions, 'together') || strcmpi(opt.plotgroups , 'together')
emptyindx = find(cellfun(@isempty,data));
if ~isempty(emptyindx)
for icell = 1:length(emptyindx)
if max(size(data{emptyindx(icell)})) == 0
data{emptyindx(icell)} = nan;
end
end
end
end
% remove empty entries
% --------------------
datapresent = ~cellfun(@isempty, data);
if size(data,1) > 1, for c = size(data,1):-1:1, if sum(datapresent(c,:)) == 0, data(c,:) = []; coldata(c,:) = []; if ~strcmpi(opt.plotconditions, 'together') opt.titles(c,:) = []; end; if ~isempty(opt.groupstats), opt.groupstats(c) = []; end; end; end; end
if size(data,2) > 1, for g = size(data,2):-1:1, if sum(datapresent(:,g)) == 0, data(:,g) = []; coldata(:,g) = []; if ~strcmpi(opt.plotgroups , 'together') opt.titles(:,g) = []; end; if ~isempty(opt.condstats ), opt.condstats( g) = []; end; end; end; end
if strcmpi(opt.plotsubjects, 'off'), tmpcol = coldata'; tmpcol = tmpcol(:)'; end
nc = size(data,1);
ng = size(data,2);
% number of columns and rows to plot
% ----------------------------------
if strcmpi(opt.plotgroups, 'together'), ngplot = 1; else ngplot = ng; end
if strcmpi(opt.plotconditions, 'together'), ncplot = 1; else ncplot = nc; end
if nc >= ng, opt.subplot = 'transpose';
else opt.subplot = 'normal';
end
if isempty(opt.condnames)
for c=1:nc, opt.condnames{c} = sprintf('Cond. %d', c); end
if nc == 1, opt.condnames = { '' }; end
end
if isempty(opt.groupnames)
for g=1:ng, opt.groupnames{g} = sprintf('Group. %d', g); end
if ng == 1, opt.groupnames = { '' }; end
end
% plotting parameters
% ------------------
if ng > 1 && ~isempty(opt.groupstats), addc = 1; else addc = 0; end
if nc > 1 && ~isempty(opt.condstats ), addr = 1; else addr = 0; end
if length(opt.threshold) > 1, opt.threshold = opt.threshold(1); end
if strcmpi(opt.singlesubject, 'off') ...
&& ( ~isempty(opt.condstats) || ~isempty(opt.groupstats) ) % only for curves
plottag = 0;
if strcmpi(opt.plotgroups, 'together') && isempty(opt.condstats) && ~isempty(opt.groupstats) && ~isnan(opt.threshold), addc = 0; plottag = 1; end
if strcmpi(opt.plotconditions , 'together') && ~isempty(opt.condstats) && isempty(opt.groupstats) && ~isnan(opt.threshold), addr = 0; plottag = 1; end
if ~isnan(opt.threshold) && plottag == 0 && strcmpi(opt.figure, 'on')
disp('Warning: cannot plot condition/group on the same panel while using a fixed');
disp(' threshold, unless you only compute statistics for ether groups or conditions');
opt.plotgroups = 'apart';
opt.plotconditions = 'apart';
end
end
% resize data to match points x channels x subjects
% or points x 1 x components
% -------------------------------------------------
for index = 1:length(data(:))
if length(opt.chanlocs) ~= size(data{index},2) && (length(opt.chanlocs) == 1 || isempty(opt.chanlocs))
data{index} = reshape(data{index}, [ size(data{index},1) 1 size(data{index},2) ]);
end
end
% compute significance mask
% --------------------------
pinterplot = {};
if strcmpi(opt.effect, 'marginal') || ng == 1 || nc == 1
if ~isnan(opt.threshold) && ( ~isempty(opt.groupstats) || ~isempty(opt.condstats) )
pcondplot = opt.condstats;
pgroupplot = opt.groupstats;
maxplot = 1;
else
for ind = 1:length(opt.condstats), pcondplot{ind} = -log10(opt.condstats{ind}); end
for ind = 1:length(opt.groupstats), pgroupplot{ind} = -log10(opt.groupstats{ind}); end
maxplot = 3;
end
elseif strcmpi(opt.effect, 'main') && ~isempty(opt.interstats)
if ~isnan(opt.threshold) && ( ~isempty(opt.groupstats) || ~isempty(opt.condstats) )
pcondplot = { opt.interstats{1} };
pgroupplot = { opt.interstats{2} };
pinterplot = opt.interstats{3};
maxplot = 1;
else
if ~isempty(opt.interstats{1}), pcondplot = { -log10(opt.interstats{1}) }; end
if ~isempty(opt.interstats{2}), pgroupplot = { -log10(opt.interstats{2}) }; end
if ~isempty(opt.interstats{3}), pinterplot = -log10(opt.interstats{3}); end
maxplot = 3;
end
else
pcondplot = { };
pgroupplot = { };
pinterplot = { };
maxplot = 1;
end
% labels
% ------
if strcmpi(opt.unitx, 'ms'), xlab = 'Time (ms)'; ylab = 'Potential (\muV)';
elseif strcmpi(opt.unitx, 'rmsms'), xlab = 'Time (ms)'; ylab = 'Potential (RMS \muV)';
elseif strcmpi(opt.unitx, 'hz'), xlab = 'Frequency (Hz)'; ylab = 'Log Power 10*log_{10}(\muV^{2})'; % ylab = 'Power (10*log_{10}(\muV^{2}))';
elseif strcmpi(opt.unitx, 'rmshz'), xlab = 'Frequency (Hz)'; ylab = 'Log Power 10*log_{10}(RMS \muV^{2})'; % ylab = 'Power (10*log_{10}(\muV^{2}))';
elseif strcmpi(opt.unitx, 'hzpsd'), xlab = 'Frequency (Hz)'; ylab = 'Log Power Spectral Density 10*log_{10}(\muV^{2}/Hz)'; % ylab = 'Power (10*log_{10}(\muV^{2}))';
elseif strcmpi(opt.unitx, 'rmshzpsd'), xlab = 'Frequency (Hz)'; ylab = 'Log Power Spectral Density 10*log_{10}(RMS \muV^{2}/Hz)'; % ylab = 'Power (10*log_{10}(\muV^{2}))';
end
if ~isnan(opt.threshold), statopt = { 'xlabel' xlab };
else statopt = { 'logpval' 'on' 'xlabel' xlab 'ylabel' '-log10(p)' 'ylim' [0 maxplot] };
end
% adjust figure size
% ------------------
if strcmpi(opt.figure, 'on')
figure('color', 'w','Tag', opt.figtag);
pos = get(gcf, 'position');
basewinsize = 200/max(nc,ng)*3;
if strcmpi(opt.plotgroups, 'together') pos(3) = 200*(1+addc);
else pos(3) = 200*(ng+addc);
end
if strcmpi(opt.plotconditions , 'together') pos(4) = 200*(1+addr);
else pos(4) = 200*(nc+addr);
end
if all(pos(3:4) == 200), pos(3:4) = 400; end % double figure size if 1x1
if strcmpi(opt.subplot, 'transpose'), set(gcf, 'position', [ pos(1) pos(2) pos(4) pos(3)]);
else set(gcf, 'position', pos);
end
else
opt.subplot = 'noplot';
end
if isempty(opt.ylim)
if strcmpi(opt.plotsubjects, 'off')
opt.ylim = [min(cellfun(@(x)single(min(min(mean(x,3)))), data(:))) max(cellfun(@(x)single(max(max(mean(x,3)))), data(:)))];
else
opt.ylim = [min(cellfun(@(x)single(min(x(:))), data(:))) max(cellfun(@(x)single(max(x(:))), data(:)))];
end
end
colcount = 1; % only when plotting all conditions on the same figure
tmpcol = col;
for c = 1:ncplot
for g = 1:ngplot
if strcmpi(opt.figure, 'off'), tmpcol(1) = []; end % knock off colors ----- rows col ind
if strcmpi(opt.plotgroups, 'together'), hdl(c,g)=mysubplot(ncplot+addr, ngplot+addc, c, 1, opt.subplot); ci = g;
elseif strcmpi(opt.plotconditions, 'together'), hdl(c,g)=mysubplot(ncplot+addr, ngplot+addc, 1, g, opt.subplot); ci = c;
else hdl(c,g)=mysubplot(ncplot+addr, ngplot+addc, c, g, opt.subplot); ci = 1;
end
if ~isempty(data{c,g})
% read all data from one condition or group
% -----------------------------------------
dimreduced_sizediffers = 0;
if ncplot ~= nc && ngplot ~= ng
maxdim = max(max(cellfun(@(x)(size(x, ndims(x))), data)));
for cc = 1:size(data,1)
for gg = 1:size(data,2)
tmptmpdata = real(data{cc,gg});
if cc == 1 && gg == 1, tmpdata = NaN*zeros([size(tmptmpdata,1) size(tmptmpdata,2) maxdim length(data(:))]); end
tmpdata(:,:,1:size(tmptmpdata,3),gg+((cc-1)*ng)) = tmptmpdata;
end
end
elseif ncplot ~= nc % plot conditions together
for ind = 2:size(data,1), if numel(size(data{ind,1})) ~= numel(size(data{1})) || any(size(data{ind,1}) ~= size(data{1})), dimreduced_sizediffers = 1; end; end
for cc = 1:nc
[trash,order] = sort(cellfun(@length,data(:,g)),'descend'); clear trash;
tmptmpdata = real(data{order(cc),g});
if dimreduced_sizediffers
tmptmpdata = nan_mean(tmptmpdata,ndims(tmptmpdata)); % average across last dim
end
if cc == 1 && ndims(tmptmpdata) == 3, tmpdata = zeros([size(tmptmpdata) nc]); end
if cc == 1 && ndims(tmptmpdata) == 2, tmpdata = zeros([size(tmptmpdata) 1 nc]); end
if ~any(isnan(tmptmpdata))
tmpdata(:,:,:,order(cc)) = tmptmpdata;
else
tmpdata(:,:,:,order(cc)) = nan;
end
end
elseif ngplot ~= ng % plot groups together
for ind = 2:size(data,2), if numel(size(data{c,ind})) ~= numel(size(data{c})) || any((size(data{c,ind}) ~= size(data{c}))), dimreduced_sizediffers = 1; end; end
for gg = 1:ng
[trash,order] = sort(cellfun(@length,data(c,:)),'descend'); clear trash;
tmptmpdata = real(data{c,order(gg)});
if dimreduced_sizediffers
tmptmpdata = nan_mean(tmptmpdata,ndims(tmptmpdata));
end
if gg == 1 && ndims(tmptmpdata) == 3, tmpdata = zeros([size(tmptmpdata) ng]); end
if gg == 1 && ndims(tmptmpdata) == 2, tmpdata = zeros([size(tmptmpdata) 1 ng]); end
if ~any(isnan(tmptmpdata))
tmpdata(:,:,:,order(gg)) = tmptmpdata;
else
tmpdata(:,:,:,order(gg)) = nan;
end
end
else
tmpdata = real(data{c,g});
end
% plot difference
% ---------------
if ~strcmpi(opt.plotdiff, 'off')
if ngplot ~= ng || ncplot ~= nc
if size(tmpdata,3) == 2
tmpdata(:,:,end+1) = tmpdata(:,:,2)-tmpdata(:,:,1);
opt.legend{end+1} = [ opt.legend{2} '-' opt.legend{1} ];
elseif size(tmpdata,4) == 2
tmpdata(:,:,:,end+1) = tmpdata(:,:,:,2)-tmpdata(:,:,:,1);
opt.legend{end+1} = [ opt.legend{2} '-' opt.legend{1} ];
else
disp('Cannot plot difference, more than 2 indep. variable values');
end
else
disp('Cannot plot difference, indep. variable value must be plotted together');
end
end
if ~isempty(opt.filter), tmpdata = myfilt(tmpdata, 1000/(allx(2)-allx(1)), 0, opt.filter); end
% plotting options
% ----------------
plotopt = { allx };
% -------------------------------------------------------------
% tmpdata is of size "points x channels x subject x conditions"
% or "points x 1 x components x conditions"
% -------------------------------------------------------------
if ~dimreduced_sizediffers && strcmpi(opt.plotsubjects, 'off') % average across subjects
tmpstd = squeeze(real(std(tmpdata,[],3)))/sqrt(size(tmpdata,3)); tmpstd = squeeze(permute(tmpstd, [2 1 3])); tmpdata = squeeze(real(nan_mean(tmpdata,3)));
end
tmpdata = squeeze(permute(tmpdata, [2 1 3 4]));
% -----------------------------------------------------------------
% tmpdata is now of size "channels x points x subject x conditions"
% -----------------------------------------------------------------
if strcmpi(opt.plottopo, 'on'), highlight = 'background'; else highlight = 'bottom'; end
if strcmpi(opt.plotgroups, 'together') && isempty(opt.condstats) && ...
~isnan(opt.threshold) && ~isempty(opt.groupstats)
plotopt = { plotopt{:} 'maskarray' };
tmpdata = { tmpdata pgroupplot{c}' };
elseif strcmpi(opt.plotconditions, 'together') && isempty(opt.groupstats) && ...
~isnan(opt.threshold) && ~isempty(opt.condstats)
plotopt = { plotopt{:} 'maskarray' };
tmpdata = { tmpdata pcondplot{g}' };
end
plotopt = { plotopt{:} 'highlightmode', highlight };
if strcmpi(opt.plotsubjects, 'on')
plotopt = { plotopt{:} 'plotmean' 'on' 'plotindiv' 'on' };
else
plotopt = { plotopt{:} 'plotmean' 'off' };
end
plotopt = { plotopt{:} 'ylim' opt.ylim 'xlabel' xlab 'ylabel' ylab };
if ncplot ~= nc || ngplot ~= ng
plotopt = { plotopt{:} 'legend' opt.legend };
end
if strcmpi(opt.plottopo, 'on') && length(opt.chanlocs) > 1
metaplottopo(tmpdata, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { plotopt{:} }, 'axcopycom', 'on', 'datapos', [2 3], 'title', opt.titles{c,g});
elseif iscell(tmpdata)
if ~all(isnan(tmpdata{1}))
plotcurve( allx, tmpdata{1}, 'colors', tmpcol, 'maskarray', tmpdata{2}, plotopt{3:end}, 'title', opt.titles{c,g});
else
plotcurve( allx, nan(size(tmpdata{1},2),length(allx)), 'colors', tmpcol, 'maskarray', tmpdata{2}, plotopt{3:end}, 'title', opt.titles{c,g});
end
else
if isempty(findstr(opt.plotstderr, 'nocurve'))
if all(isnan(tmpdata))
plotcurve( allx, nan(size(tmpdata,2),length(allx)), 'colors', tmpcol, plotopt{2:end}, 'traceinfo', 'on', 'title', opt.titles{c,g});
else
plotcurve( allx, tmpdata, 'colors', tmpcol, plotopt{2:end}, 'traceinfo', 'on', 'title', opt.titles{c,g});
end
end
if ~strcmpi(opt.plotstderr, 'off')
if ~dimreduced_sizediffers
if ~isempty(findstr(opt.plotstderr, 'diff')), begind = 3; else begind = 1; end
set(gcf, 'renderer', 'OpenGL')
for tmpi = begind:size(tmpdata,1)
hold on; chandle = fillcurves( allx, tmpdata(tmpi,:)-tmpstd(tmpi,:), tmpdata(tmpi,:)+tmpstd(tmpi,:), tmpcol{tmpi}); hold on;
numfaces = size(get(chandle(1), 'Vertices'),1);
set(chandle(1), 'FaceVertexCData', repmat([1 1 1], [numfaces 1]), 'Cdatamapping', 'direct', 'facealpha', 0.3, 'edgecolor', 'none');
end
else
disp('Some conditions have more subjects than others, cannot plot standard error');
end
end
end
end
% statistics across groups
% -------------------------
if g == ngplot && ng > 1 && ~isempty(opt.groupstats)
if ~strcmpi(opt.plotgroups, 'together') || ~isempty(opt.condstats) || isnan(opt.threshold)
if strcmpi(opt.effect, 'marginal') || (strcmpi(opt.effect, 'main') && c == 1)
if strcmpi(opt.effect, 'main') && nc>1, centerc = nc/2-0.5; else centerc = 0; end
if strcmpi(opt.plotgroups, 'together'), mysubplot(ncplot+addr, ngplot+addc, c+centerc, 2, opt.subplot); ci = g;
elseif strcmpi(opt.plotconditions, 'together'), mysubplot(ncplot+addr, ngplot+addc, 1, ngplot + 1, opt.subplot); ci = c;
else mysubplot(ncplot+addr, ngplot+addc, c+centerc, ngplot + 1, opt.subplot); ci = 1;
end
if strcmpi(opt.plotconditions, 'together'), condnames = 'Conditions'; else condnames = opt.condnames{c}; end
if ~isnan(opt.threshold)
if strcmpi(opt.plottopo, 'on')
metaplottopo({zeros(size(pgroupplot{c}')) pgroupplot{c}'}, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { allx 'maskarray' statopt{:} }, 'datapos', [2 3], 'title', opt.titles{c, g+1});
else plotcurve(allx, zeros(size(allx)), 'maskarray', mean(pgroupplot{c},2), 'ylim', [0.1 1], 'title', opt.titles{c, g+1}, statopt{:});
end
else
if strcmpi(opt.plottopo, 'on')
metaplottopo(pgroupplot{c}', 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { allx statopt{:} }, 'datapos', [2 3], 'title', opt.titles{c, g+1});
else plotcurve(allx, mean(pgroupplot{c},2), 'title', opt.titles{c, g+1}, statopt{:});
end
end
end
end
end
end
end
% statistics across conditions
% -----------------------------
if ~isempty(opt.condstats) && nc > 1 && (~strcmpi(opt.plotconditions, 'together') || ~isempty(opt.groupstats) || isnan(opt.threshold))
for g = 1:ng
if strcmpi(opt.effect, 'marginal') || (strcmpi(opt.effect, 'main') && g == 1)
if strcmpi(opt.effect, 'main') && ng>1, centerg = ng/2-0.5; else centerg = 0; end
if strcmpi(opt.plotgroups, 'together'), mysubplot(ncplot+addr, ngplot+addc, ncplot+addr, 1, opt.subplot);
elseif strcmpi(opt.plotconditions, 'together'), mysubplot(ncplot+addr, ngplot+addc, 2, g+centerg, opt.subplot);
else mysubplot(ncplot+addr, ngplot+addc, ncplot+addr, g+centerg, opt.subplot);
end
if strcmpi(opt.plotgroups, 'together'), groupnames = 'Groups'; else groupnames = opt.groupnames{g}; end
if ~isnan(opt.threshold)
if strcmpi(opt.plottopo, 'on')
metaplottopo({zeros(size(pcondplot{g}')) pcondplot{g}'}, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { allx 'maskarray' statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, g});
else plotcurve(allx, zeros(size(allx)), 'maskarray', mean(pcondplot{g},2), 'ylim', [0.1 1], 'title', opt.titles{end, g}, statopt{:});
end
else
if strcmpi(opt.plottopo, 'on')
metaplottopo(pcondplot{g}', 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { allx statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, g});
else plotcurve(allx, mean(pcondplot{g},2), 'title', opt.titles{end, g}, statopt{:});
end
end
end
end
end
% statistics across group and conditions
% ---------------------------------------
if ~isempty(opt.groupstats) && ~isempty(opt.condstats) && ng > 1 && nc > 1
mysubplot(ncplot+addr, ngplot+addc, ncplot+addr, ngplot + 1, opt.subplot);
if ~isempty(pinterplot)
if ~isnan(opt.threshold)
if strcmpi(opt.plottopo, 'on')
metaplottopo({zeros(size(pinterplot')) pinterplot'}, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { allx 'maskarray' statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, end});
else plotcurve(allx, zeros(size(allx)), 'maskarray', mean(pinterplot,2), 'ylim', [0.1 1], 'title', opt.titles{end, end}, statopt{:});
xlabel(xlab); ylabel('-log10(p)');
end
else
if strcmpi(opt.plottopo, 'on')
metaplottopo(pinterplot', 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ...
'plotargs', { allx statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, end});
else plotcurve(allx, mean(pinterplot,2), 'title', opt.titles{end, end}, statopt{:});
end
end
else
text(0,0.6, [ 'Plot main effect ' 10 'to see interaction' 10 '("Stat" button option)']);
axis off;
end
end
if strcmpi(opt.plottopo, 'off') && length(hdl(:)) > 1
axcopy;
% remove axis labels (for most but not all)
% ------------------
if strcmpi(opt.subplot, 'transpose')
for c = 1:size(hdl,2)
for g = 1:size(hdl,1)
axes(hdl(g,c));
if c ~= 1 && size(hdl,2) ~=1, xlabel(''); legend off; end
if g ~= 1 && size(hdl,1) ~= 1, ylabel(''); legend off; end
end
end
else
for c = 1:size(hdl,1)
for g = 1:size(hdl,2)
axes(hdl(c,g));
if g ~= 1 && size(hdl,2) ~=1, ylabel(''); legend off; end
if c ~= size(hdl,1) && size(hdl,1) ~= 1, xlabel(''); legend off; end
end
end
end
end
% mysubplot (allow to transpose if necessary)
% -------------------------------------------
function hdl = mysubplot(nr,nc,r,c,subplottype)
cmargin = 0.2/nc;
rmargin = 0.2/nr;
if strcmpi(subplottype, 'transpose'), hdl = subplot('position',[(r-1)/nr+rmargin (nc-c)/nc+cmargin 1/nr-2*rmargin 1/nc-2*cmargin]);
elseif strcmpi(subplottype, 'normal'), hdl = subplot('position',[(c-1)/nc+cmargin (nr-r)/nr+rmargin 1/nc-2*cmargin 1/nr-2*rmargin]);
elseif strcmpi(subplottype, 'noplot'), hdl = gca;
else error('Unknown subplot type');
end
% rapid filtering for ERP
% -----------------------
function tmpdata2 = myfilt(tmpdata, srate, lowpass, highpass);
bscorrect = 1;
if bscorrect
% Getting initial baseline
bs_val1 = mean(tmpdata,1);
bs1 = repmat(bs_val1, size(tmpdata,1), 1);
end
% Filtering
tmpdata2 = reshape(tmpdata, size(tmpdata,1), size(tmpdata,2)*size(tmpdata,3)*size(tmpdata,4));
tmpdata2 = eegfiltfft(tmpdata2',srate, lowpass, highpass)';
tmpdata2 = reshape(tmpdata2, size(tmpdata,1), size(tmpdata,2), size(tmpdata,3), size(tmpdata,4));
if bscorrect
% Getting after-filter baseline
bs_val2 = mean(tmpdata2,1);
bs2 = repmat(bs_val2, size(tmpdata2,1), 1);
% Correcting the baseline
realbs = bs1-bs2;
tmpdata2 = tmpdata2 + realbs;
end