forked from jerry1993-tech/Cornucopia-LLaMA-Fin-Chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
143 lines (124 loc) · 4.6 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding:utf-8 -*-
"""
This file is to infer the tuned LLaMa model.
"""
import sys
import json
import argparse
import torch
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
parser = argparse.ArgumentParser()
parser.add_argument("--load_8bit", default=False, type=bool)
parser.add_argument("--base_model", default='', type=str, required=True, help="original pretrained llama weights")
parser.add_argument("--instruct_dir", default='', type=str, help="dataset of infer.")
parser.add_argument("--use_lora", default=True, type=bool)
parser.add_argument("--lora_weights", default='tloen/alpaca-lora-7b', type=str, help="The lora weights of llama.")
parser.add_argument("--prompt_template", default='fin_template', type=str, help="The template of infer data.")
args = parser.parse_args()
def load_instruction(instruct_dir):
input_data = []
with open(instruct_dir, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
d = json.loads(line)
input_data.append(d)
return input_data
def main():
# -----------------------------------------
# 加载 prompt 模板与 llama模型
prompter = Prompter(args.prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(args.base_model)
model = LlamaForCausalLM.from_pretrained(
args.base_model,
load_in_8bit=args.load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
if args.use_lora:
print("using lora {}".format(args.lora_weights))
model = PeftModel.from_pretrained(
model,
args.lora_weights,
torch_dtype=torch.float16
)
# 重新配置 decapoda-research config
model.config.pad_token_id, tokenizer.pad_token_id = 0, 0 # unk token
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not args.load_8bit:
model.half() # 开启半精度
model.eval() # 保证BN层直接利用之前训练阶段得到的均值和方差
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# -----------------------------------------
def evaluate(
instruction,
input=None,
temperature=0.2,
top_p=0.85,
top_k=40,
num_beams=4,
max_new_tokens=512,
**kwargs
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True,
remove_invalid_values=True,
repetition_penalty=3.5,
length_penalty=0.1,
epsilon_cutoff=0.05,
eos_token_id=2,
forced_eos_token_id=2,
pad_token_id=0
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
def infer_from_json(instruct_dir):
input_data = load_instruction(instruct_dir)
for d in input_data:
instruction = d["instruction"]
output = d["output"]
print("###infering###")
model_output = evaluate(instruction)
print("###instruction###")
print(instruction)
print("###golden output###")
print(output)
print("###model output###")
print(model_output)
if args.instruct_dir != "":
infer_from_json(args.instruct_dir)
else:
for instruction in [
"老年人理财好还是存定期好?",
"手上有20万存款,可以作什么投资",
"净值型和传统理财产品的区别,有什么不同?",
"股票和基金能当天随买随卖吗?"
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
if __name__ == "__main__":
main()