forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
check-if-an-original-string-exists-given-two-encoded-strings.py
159 lines (150 loc) · 6.8 KB
/
check-if-an-original-string-exists-given-two-encoded-strings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Time: O(m * n * k), k is the max number of consecutive digits in s1 and s2
# Space: O(m * n * k)
# top-down dp (faster since accessing less states)
class Solution(object):
def possiblyEquals(self, s1, s2):
"""
:type s1: str
:type s2: str
:rtype: bool
"""
def general_possible_numbers(s): # Time: O(2^l), Space: O(2^l), l is the length of consecutive digits, and l is at most 3
dp = [set() for _ in xrange(len(s))]
for i in xrange(len(s)):
curr, basis = 0, 1
for j in reversed(xrange(i+1)):
curr += int(s[j])*basis
basis *= 10
if s[j] == '0':
continue
if j == 0:
dp[i].add(curr)
else:
dp[i].update(x+curr for x in dp[j-1])
return dp[-1]
def optimized_possible_numbers(s):
assert(len(s) <= 3)
result = {int(s)}
if len(s) >= 2:
if s[1] != '0':
result.add(int(s[:1])+int(s[1:]))
if len(s) >= 3:
if s[2] != '0':
result.add(int(s[:2])+int(s[2:]))
if s[1] != '0':
result.add(int(s[0:1])+int(s[1:2])+int(s[2:]))
return result
def memoization(s1, s2, i, j, k, lookup):
if (i, j, k) not in lookup:
if i == len(s1) and j == len(s2):
lookup[(i, j, k)] = (k == 0)
elif i != len(s1) and s1[i].isdigit():
lookup[(i, j, k)] = False
for ni in xrange(i+1, len(s1)+1):
if ni == len(s1) or not s1[ni].isdigit():
break
for x in optimized_possible_numbers(s1[i:ni]):
if memoization(s1, s2, ni, j, k+x, lookup):
lookup[(i, j, k)] = True
break
elif j != len(s2) and s2[j].isdigit():
lookup[(i, j, k)] = False
for nj in xrange(j+1, len(s2)+1):
if nj == len(s2) or not s2[nj].isdigit():
break
for x in optimized_possible_numbers(s2[j:nj]):
if memoization(s1, s2, i, nj, k-x, lookup):
lookup[(i, j, k)] = True
break
elif k < 0:
lookup[(i, j, k)] = memoization(s1, s2, i+1, j, k+1, lookup) if i != len(s1) else False
elif k > 0:
lookup[(i, j, k)] = memoization(s1, s2, i, j+1, k-1, lookup) if j != len(s2) else False
else:
lookup[(i, j, k)] = memoization(s1, s2, i+1, j+1, k, lookup) if i != len(s1) and j != len(s2) and s1[i] == s2[j] else False
return lookup[(i, j, k)]
return memoization(s1, s2, 0, 0, 0, {})
# Time: O(m * n * k), k is the max number of consecutive digits in s1 and s2
# Space: O(m * n * k)
# top-down dp (faster since accessing less states)
class Solution2(object):
def possiblyEquals(self, s1, s2):
"""
:type s1: str
:type s2: str
:rtype: bool
"""
def memoization(s1, s2, i, j, k, lookup):
if (i, j, k) not in lookup:
if i == len(s1) and j == len(s2):
lookup[(i, j, k)] = (k == 0)
elif i != len(s1) and s1[i].isdigit():
lookup[(i, j, k)] = False
for ni in xrange(i+1, len(s1)+1):
if (ni == len(s1) or s1[ni] != '0') and memoization(s1, s2, ni, j, k+int(s1[i:ni]), lookup):
lookup[(i, j, k)] = True
break
if ni == len(s1) or not s1[ni].isdigit():
break
elif j != len(s2) and s2[j].isdigit():
lookup[(i, j, k)] = False
for nj in xrange(j+1, len(s2)+1):
if (nj == len(s2) or s2[nj] != '0') and memoization(s1, s2, i, nj, k-int(s2[j:nj]), lookup):
lookup[(i, j, k)] = True
break
if nj == len(s2) or not s2[nj].isdigit():
break
elif k < 0:
lookup[(i, j, k)] = memoization(s1, s2, i+1, j, k+1, lookup) if i != len(s1) else False
elif k > 0:
lookup[(i, j, k)] = memoization(s1, s2, i, j+1, k-1, lookup) if j != len(s2) else False
else:
lookup[(i, j, k)] = memoization(s1, s2, i+1, j+1, k, lookup) if i != len(s1) and j != len(s2) and s1[i] == s2[j] else False
return lookup[(i, j, k)]
return memoization(s1, s2, 0, 0, 0, {})
# Time: O(m * n * k), k is the max number of consecutive digits in s1 and s2
# Space: O(min(m, n) * k)
# bottom-up dp
class Solution3(object):
def possiblyEquals(self, s1, s2):
"""
:type s1: str
:type s2: str
:rtype: bool
"""
MAX_DIGIT_LEN = 3
w = 1+MAX_DIGIT_LEN
dp = [[set() for _ in xrange(len(s2)+1)] for _ in xrange(w)]
dp[0][0].add(0)
for i in xrange(len(s1)+1):
if i:
dp[(i-1)%w] = [set() for _ in xrange(len(s2)+1)]
if i != len(s1) and s1[i] == '0':
continue
for j in xrange(len(s2)+1):
for k in dp[i%w][j]:
if i != len(s1) and j != len(s2) and s1[i] == s2[j] and k == 0:
dp[(i+1)%w][j+1].add(k)
if k <= 0 and i != len(s1):
if not s1[i].isdigit():
if k:
dp[(i+1)%w][j].add(k+1)
elif s1[i] != '0':
curr = 0
for ni in xrange(i, len(s1)):
if not s1[ni].isdigit():
break
curr = curr*10 + int(s1[ni])
dp[(ni+1)%w][j].add(k+curr)
if k >= 0 and j != len(s2):
if not s2[j].isdigit():
if k:
dp[i%w][j+1].add(k-1)
elif s2[j] != '0':
curr = 0
for nj in xrange(j, len(s2)):
if not s2[nj].isdigit():
break
curr = curr*10 + int(s2[nj])
dp[i%w][nj+1].add(k-curr)
return 0 in dp[len(s1)%w][len(s2)]