Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unsupervised Domain Adaptation for WILDS (Molecule classification)

Installation

It's suggested to use pytorch==1.10.1 in order to reproduce the benchmark results.

Then, you need to run

pip install -r requirements.txt

At last, you need to install torch_sparse following https://github.com/rusty1s/pytorch_sparse.

Dataset

Following datasets can be downloaded automatically:

Supported Methods

TODO

Usage

The shell files give all the training scripts we use, e.g.

CUDA_VISIBLE_DEVICES=0 python erm.py data/wilds --lr 3e-2 -b 4096 4096 --epochs 200 \
  --seed 0 --deterministic --log logs/erm/obg_lr_0_03_deterministic

Results

Performance on WILDS-OGB-MolPCBA (GIN-virtual)

Methods Val Avg Precision Test Avg Precision GPU Memory Usage(GB)
ERM 29.0 28.0 17.8

Visualization

We use tensorboard to record the training process and visualize the outputs of the models.

tensorboard --logdir=logs