forked from gbeced/pyalgotrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheventstudy.py
68 lines (55 loc) · 2.31 KB
/
eventstudy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from __future__ import print_function
from pyalgotrade import eventprofiler
from pyalgotrade.technical import stats
from pyalgotrade.technical import roc
from pyalgotrade.technical import ma
from pyalgotrade.tools import quandl
# Event inspired on an example from Ernie Chan's book:
# 'Algorithmic Trading: Winning Strategies and Their Rationale'
class BuyOnGap(eventprofiler.Predicate):
def __init__(self, feed):
super(BuyOnGap, self).__init__()
stdDevPeriod = 90
smaPeriod = 20
self.__returns = {}
self.__stdDev = {}
self.__ma = {}
for instrument in feed.getRegisteredInstruments():
priceDS = feed[instrument].getAdjCloseDataSeries()
# Returns over the adjusted close values.
self.__returns[instrument] = roc.RateOfChange(priceDS, 1)
# StdDev over those returns.
self.__stdDev[instrument] = stats.StdDev(self.__returns[instrument], stdDevPeriod)
# MA over the adjusted close values.
self.__ma[instrument] = ma.SMA(priceDS, smaPeriod)
def __gappedDown(self, instrument, bards):
ret = False
if self.__stdDev[instrument][-1] is not None:
prevBar = bards[-2]
currBar = bards[-1]
low2OpenRet = (currBar.getOpen(True) - prevBar.getLow(True)) / float(prevBar.getLow(True))
if low2OpenRet < (self.__returns[instrument][-1] - self.__stdDev[instrument][-1]):
ret = True
return ret
def __aboveSMA(self, instrument, bards):
ret = False
if self.__ma[instrument][-1] is not None and bards[-1].getOpen(True) > self.__ma[instrument][-1]:
ret = True
return ret
def eventOccurred(self, instrument, bards):
ret = False
if self.__gappedDown(instrument, bards) and self.__aboveSMA(instrument, bards):
ret = True
return ret
def main(plot):
instruments = ["IBM", "AES", "AIG"]
feed = quandl.build_feed("WIKI", instruments, 2008, 2009, ".")
predicate = BuyOnGap(feed)
eventProfiler = eventprofiler.Profiler(predicate, 5, 5)
eventProfiler.run(feed, True)
results = eventProfiler.getResults()
print("%d events found" % (results.getEventCount()))
if plot:
eventprofiler.plot(results)
if __name__ == "__main__":
main(True)