forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cascadedetect.hpp
650 lines (529 loc) · 21.8 KB
/
cascadedetect.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
#pragma once
#include "opencv2/core/ocl.hpp"
namespace cv
{
void clipObjects(Size sz, std::vector<Rect>& objects,
std::vector<int>* a, std::vector<double>* b);
class FeatureEvaluator
{
public:
enum
{
HAAR = 0,
LBP = 1,
HOG = 2
};
struct ScaleData
{
ScaleData() { scale = 0.f; layer_ofs = ystep = 0; }
Size getWorkingSize(Size winSize) const
{
return Size(std::max(szi.width - winSize.width, 0),
std::max(szi.height - winSize.height, 0));
}
float scale;
Size szi;
int layer_ofs, ystep;
};
virtual ~FeatureEvaluator();
virtual bool read(const FileNode& node, Size origWinSize);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
int getNumChannels() const { return nchannels; }
virtual bool setImage(InputArray img, const std::vector<float>& scales);
virtual bool setWindow(Point p, int scaleIdx);
const ScaleData& getScaleData(int scaleIdx) const
{
CV_Assert( 0 <= scaleIdx && scaleIdx < (int)scaleData->size());
return scaleData->at(scaleIdx);
}
virtual void getUMats(std::vector<UMat>& bufs);
virtual void getMats();
Size getLocalSize() const { return localSize; }
Size getLocalBufSize() const { return lbufSize; }
virtual float calcOrd(int featureIdx) const;
virtual int calcCat(int featureIdx) const;
static Ptr<FeatureEvaluator> create(int type);
protected:
enum { SBUF_VALID=1, USBUF_VALID=2 };
int sbufFlag;
bool updateScaleData( Size imgsz, const std::vector<float>& _scales );
virtual void computeChannels( int, InputArray ) {}
virtual void computeOptFeatures() {}
Size origWinSize, sbufSize, localSize, lbufSize;
int nchannels;
Mat sbuf, rbuf;
UMat urbuf, usbuf, ufbuf, uscaleData;
Ptr<std::vector<ScaleData> > scaleData;
};
class CascadeClassifierImpl : public BaseCascadeClassifier
{
public:
CascadeClassifierImpl();
virtual ~CascadeClassifierImpl();
bool empty() const;
bool load( const String& filename );
void read( const FileNode& node );
bool read_( const FileNode& node );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size() );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& numDetections,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );
void detectMultiScale( InputArray image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& rejectLevels,
CV_OUT std::vector<double>& levelWeights,
double scaleFactor = 1.1,
int minNeighbors = 3, int flags = 0,
Size minSize = Size(),
Size maxSize = Size(),
bool outputRejectLevels = false );
bool isOldFormatCascade() const;
Size getOriginalWindowSize() const;
int getFeatureType() const;
void* getOldCascade();
void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator);
Ptr<MaskGenerator> getMaskGenerator();
protected:
enum { SUM_ALIGN = 64 };
bool detectSingleScale( InputArray image, Size processingRectSize,
int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
Size sumSize0, bool outputRejectLevels = false );
#ifdef HAVE_OPENCL
bool ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales,
std::vector<Rect>& candidates );
#endif
void detectMultiScaleNoGrouping( InputArray image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false );
enum { MAX_FACES = 10000 };
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING,
SCALE_IMAGE = CASCADE_SCALE_IMAGE,
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH
};
friend class CascadeClassifierInvoker;
friend class SparseCascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategorical( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictOrderedStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
int runAt( Ptr<FeatureEvaluator>& feval, Point pt, int scaleIdx, double& weight );
class Data
{
public:
struct DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct DTree
{
int nodeCount;
};
struct Stage
{
int first;
int ntrees;
float threshold;
};
struct Stump
{
Stump() : featureIdx(0), threshold(0), left(0), right(0) { }
Stump(int _featureIdx, float _threshold, float _left, float _right)
: featureIdx(_featureIdx), threshold(_threshold), left(_left), right(_right) {}
int featureIdx;
float threshold;
float left;
float right;
};
Data();
bool read(const FileNode &node);
int stageType;
int featureType;
int ncategories;
int minNodesPerTree, maxNodesPerTree;
Size origWinSize;
std::vector<Stage> stages;
std::vector<DTree> classifiers;
std::vector<DTreeNode> nodes;
std::vector<float> leaves;
std::vector<int> subsets;
std::vector<Stump> stumps;
};
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
Ptr<MaskGenerator> maskGenerator;
UMat ugrayImage;
UMat ufacepos, ustages, unodes, uleaves, usubsets;
#ifdef HAVE_OPENCL
ocl::Kernel haarKernel, lbpKernel;
bool tryOpenCL;
#endif
Mutex mtx;
};
#define CC_CASCADE_PARAMS "cascadeParams"
#define CC_STAGE_TYPE "stageType"
#define CC_FEATURE_TYPE "featureType"
#define CC_HEIGHT "height"
#define CC_WIDTH "width"
#define CC_STAGE_NUM "stageNum"
#define CC_STAGES "stages"
#define CC_STAGE_PARAMS "stageParams"
#define CC_BOOST "BOOST"
#define CC_MAX_DEPTH "maxDepth"
#define CC_WEAK_COUNT "maxWeakCount"
#define CC_STAGE_THRESHOLD "stageThreshold"
#define CC_WEAK_CLASSIFIERS "weakClassifiers"
#define CC_INTERNAL_NODES "internalNodes"
#define CC_LEAF_VALUES "leafValues"
#define CC_FEATURES "features"
#define CC_FEATURE_PARAMS "featureParams"
#define CC_MAX_CAT_COUNT "maxCatCount"
#define CC_HAAR "HAAR"
#define CC_RECTS "rects"
#define CC_TILTED "tilted"
#define CC_LBP "LBP"
#define CC_RECT "rect"
#define CC_HOG "HOG"
#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x, y + h) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_(p0, p1, p2, p3, offset) \
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)
#define CV_SUM_OFS( p0, p1, p2, p3, sum, rect, step ) \
/* (x, y) */ \
(p0) = sum + (rect).x + (step) * (rect).y, \
/* (x + w, y) */ \
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \
/* (x, y + h) */ \
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \
/* (x + w, y + h) */ \
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)
#define CV_TILTED_OFS( p0, p1, p2, p3, tilted, rect, step ) \
/* (x, y) */ \
(p0) = tilted + (rect).x + (step) * (rect).y, \
/* (x - h, y + h) */ \
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
/* (x + w, y + w) */ \
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \
/* (x + w - h, y + w + h) */ \
(p3) = tilted + (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height)
#define CALC_SUM_OFS_(p0, p1, p2, p3, ptr) \
((ptr)[p0] - (ptr)[p1] - (ptr)[p2] + (ptr)[p3])
#define CALC_SUM_OFS(rect, ptr) CALC_SUM_OFS_((rect)[0], (rect)[1], (rect)[2], (rect)[3], ptr)
//---------------------------------------------- HaarEvaluator ---------------------------------------
class HaarEvaluator : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
bool read( const FileNode& node );
bool tilted;
enum { RECT_NUM = 3 };
struct
{
Rect r;
float weight;
} rect[RECT_NUM];
};
struct OptFeature
{
OptFeature();
enum { RECT_NUM = Feature::RECT_NUM };
float calc( const int* pwin ) const;
void setOffsets( const Feature& _f, int step, int tofs );
int ofs[RECT_NUM][4];
float weight[4];
};
HaarEvaluator();
virtual ~HaarEvaluator();
virtual bool read( const FileNode& node, Size origWinSize);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::HAAR; }
virtual bool setWindow(Point p, int scaleIdx);
Rect getNormRect() const;
int getSquaresOffset() const;
float operator()(int featureIdx) const
{ return optfeaturesPtr[featureIdx].calc(pwin) * varianceNormFactor; }
virtual float calcOrd(int featureIdx) const
{ return (*this)(featureIdx); }
protected:
virtual void computeChannels( int i, InputArray img );
virtual void computeOptFeatures();
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
Ptr<std::vector<OptFeature> > optfeatures_lbuf;
bool hasTiltedFeatures;
int tofs, sqofs;
Vec4i nofs;
Rect normrect;
const int* pwin;
OptFeature* optfeaturesPtr; // optimization
float varianceNormFactor;
};
inline HaarEvaluator::Feature :: Feature()
{
tilted = false;
rect[0].r = rect[1].r = rect[2].r = Rect();
rect[0].weight = rect[1].weight = rect[2].weight = 0;
}
inline HaarEvaluator::OptFeature :: OptFeature()
{
weight[0] = weight[1] = weight[2] = 0.f;
ofs[0][0] = ofs[0][1] = ofs[0][2] = ofs[0][3] =
ofs[1][0] = ofs[1][1] = ofs[1][2] = ofs[1][3] =
ofs[2][0] = ofs[2][1] = ofs[2][2] = ofs[2][3] = 0;
}
inline float HaarEvaluator::OptFeature :: calc( const int* ptr ) const
{
float ret = weight[0] * CALC_SUM_OFS(ofs[0], ptr) +
weight[1] * CALC_SUM_OFS(ofs[1], ptr);
if( weight[2] != 0.0f )
ret += weight[2] * CALC_SUM_OFS(ofs[2], ptr);
return ret;
}
//---------------------------------------------- LBPEvaluator -------------------------------------
class LBPEvaluator : public FeatureEvaluator
{
public:
struct Feature
{
Feature();
Feature( int x, int y, int _block_w, int _block_h ) :
rect(x, y, _block_w, _block_h) {}
bool read(const FileNode& node );
Rect rect; // weight and height for block
};
struct OptFeature
{
OptFeature();
int calc( const int* pwin ) const;
void setOffsets( const Feature& _f, int step );
int ofs[16];
};
LBPEvaluator();
virtual ~LBPEvaluator();
virtual bool read( const FileNode& node, Size origWinSize );
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const { return FeatureEvaluator::LBP; }
virtual bool setWindow(Point p, int scaleIdx);
int operator()(int featureIdx) const
{ return optfeaturesPtr[featureIdx].calc(pwin); }
virtual int calcCat(int featureIdx) const
{ return (*this)(featureIdx); }
protected:
virtual void computeChannels( int i, InputArray img );
virtual void computeOptFeatures();
Ptr<std::vector<Feature> > features;
Ptr<std::vector<OptFeature> > optfeatures;
Ptr<std::vector<OptFeature> > optfeatures_lbuf;
OptFeature* optfeaturesPtr; // optimization
const int* pwin;
};
inline LBPEvaluator::Feature :: Feature()
{
rect = Rect();
}
inline LBPEvaluator::OptFeature :: OptFeature()
{
for( int i = 0; i < 16; i++ )
ofs[i] = 0;
}
inline int LBPEvaluator::OptFeature :: calc( const int* p ) const
{
int cval = CALC_SUM_OFS_( ofs[5], ofs[6], ofs[9], ofs[10], p );
return (CALC_SUM_OFS_( ofs[0], ofs[1], ofs[4], ofs[5], p ) >= cval ? 128 : 0) | // 0
(CALC_SUM_OFS_( ofs[1], ofs[2], ofs[5], ofs[6], p ) >= cval ? 64 : 0) | // 1
(CALC_SUM_OFS_( ofs[2], ofs[3], ofs[6], ofs[7], p ) >= cval ? 32 : 0) | // 2
(CALC_SUM_OFS_( ofs[6], ofs[7], ofs[10], ofs[11], p ) >= cval ? 16 : 0) | // 5
(CALC_SUM_OFS_( ofs[10], ofs[11], ofs[14], ofs[15], p ) >= cval ? 8 : 0)| // 8
(CALC_SUM_OFS_( ofs[9], ofs[10], ofs[13], ofs[14], p ) >= cval ? 4 : 0)| // 7
(CALC_SUM_OFS_( ofs[8], ofs[9], ofs[12], ofs[13], p ) >= cval ? 2 : 0)| // 6
(CALC_SUM_OFS_( ofs[4], ofs[5], ofs[8], ofs[9], p ) >= cval ? 1 : 0);
}
//---------------------------------------------- predictor functions -------------------------------------
template<class FEval>
inline int predictOrdered( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION()
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
for( int si = 0; si < nstages; si++ )
{
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx];
double val = featureEvaluator(node.featureIdx);
idx = val < node.threshold ? node.left : node.right;
}
while( idx > 0 );
sum += cascadeLeaves[leafOfs - idx];
nodeOfs += weak.nodeCount;
leafOfs += weak.nodeCount + 1;
}
if( sum < stage.threshold )
return -si;
}
return 1;
}
template<class FEval>
inline int predictCategorical( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION()
int nstages = (int)cascade.data.stages.size();
int nodeOfs = 0, leafOfs = 0;
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
int* cascadeSubsets = &cascade.data.subsets[0];
float* cascadeLeaves = &cascade.data.leaves[0];
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
for(int si = 0; si < nstages; si++ )
{
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
sum = 0;
for( wi = 0; wi < ntrees; wi++ )
{
CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi];
int idx = 0, root = nodeOfs;
do
{
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx];
int c = featureEvaluator(node.featureIdx);
const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
}
while( idx > 0 );
sum += cascadeLeaves[leafOfs - idx];
nodeOfs += weak.nodeCount;
leafOfs += weak.nodeCount + 1;
}
if( sum < stage.threshold )
return -si;
}
return 1;
}
template<class FEval>
inline int predictOrderedStump( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION()
CV_Assert(!cascade.data.stumps.empty());
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
int nstages = (int)cascade.data.stages.size();
double tmp = 0;
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
{
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[stageIdx];
tmp = 0;
int ntrees = stage.ntrees;
for( int i = 0; i < ntrees; i++ )
{
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[i];
double value = featureEvaluator(stump.featureIdx);
tmp += value < stump.threshold ? stump.left : stump.right;
}
if( tmp < stage.threshold )
{
sum = (double)tmp;
return -stageIdx;
}
cascadeStumps += ntrees;
}
sum = (double)tmp;
return 1;
}
template<class FEval>
inline int predictCategoricalStump( CascadeClassifierImpl& cascade,
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
CV_INSTRUMENT_REGION()
CV_Assert(!cascade.data.stumps.empty());
int nstages = (int)cascade.data.stages.size();
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
size_t subsetSize = (cascade.data.ncategories + 31)/32;
const int* cascadeSubsets = &cascade.data.subsets[0];
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
double tmp = 0;
for( int si = 0; si < nstages; si++ )
{
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
int wi, ntrees = stage.ntrees;
tmp = 0;
for( wi = 0; wi < ntrees; wi++ )
{
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[wi];
int c = featureEvaluator(stump.featureIdx);
const int* subset = &cascadeSubsets[wi*subsetSize];
tmp += (subset[c>>5] & (1 << (c & 31))) ? stump.left : stump.right;
}
if( tmp < stage.threshold )
{
sum = tmp;
return -si;
}
cascadeStumps += ntrees;
cascadeSubsets += ntrees*subsetSize;
}
sum = (double)tmp;
return 1;
}
}