forked from dccharacter/STM32_Servo_Controller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.h
534 lines (435 loc) · 22.8 KB
/
config.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* Notice to developers: this file is intentionally included twice. */
/** \file
\brief Sample Configuration
\note this sample uses AIO0 for both X_STEP and thermistor, and is intended to be an example only!
*/
/*
CONTENTS
1. Mechanical/Hardware
2. Acceleration settings
3. Pinouts
4. Temperature sensors
5. Heaters
6. Communication options
7. Miscellaneous
8. Appendix A - PWMable pins and mappings
*/
/***************************************************************************\
* *
* 1. MECHANICAL/HARDWARE *
* *
\***************************************************************************/
/*
Set your microcontroller type in Makefile! atmega168/atmega328p/atmega644p/atmega1280
If you want to port this to a new chip, start off with arduino.h and see how you go.
*/
/** \def F_CPU
CPU clock rate
*/
#define SERVOS
#ifndef F_CPU
#include "stm32f10x.h"
#define F_CPU SystemCoreClock
#endif
/** \def HOST
This is the motherboard, as opposed to the extruder. See extruder/ directory for GEN3 extruder firmware
*/
#define HOST
/*
Values reflecting the gearing of your machine.
All numbers are fixed point integers, so no more than 3 digits to the right of the decimal point, please :-)
*/
/** \def STEPS_PER_M
steps per meter ( = steps per mm * 1000 )
calculate these values appropriate for your machine
for threaded rods, this is
(steps motor per turn) / (pitch of the thread) * 1000
for belts, this is
(steps per motor turn) / (number of gear teeth) / (belt module) * 1000
half-stepping doubles the number, quarter stepping requires * 4, etc.
valid range = 20 to 40'960'000 (0.02 to 40960 steps/mm)
*/
#define STEPS_PER_M_X 1024000
#define STEPS_PER_M_Y 1024000
#define STEPS_PER_M_Z 320000
/// http://blog.arcol.hu/?p=157 may help with this one
#define STEPS_PER_M_E 320000
/*
Values depending on the capabilities of your stepper motors and other mechanics.
All numbers are integers, no decimals allowed.
Units are mm/min
*/
/// used for G0 rapid moves and as a cap for all other feedrates
#define MAXIMUM_FEEDRATE_X 200
#define MAXIMUM_FEEDRATE_Y 200
#define MAXIMUM_FEEDRATE_Z 100
#define MAXIMUM_FEEDRATE_E 200
/// used when searching endstops and as default feedrate
#define SEARCH_FEEDRATE_X 50
#define SEARCH_FEEDRATE_Y 50
#define SEARCH_FEEDRATE_Z 50
// no SEARCH_FEEDRATE_E, as E can't be searched
/** \def SLOW_HOMING
wether to search the home point slowly
With some endstop configurations, like when probing for the surface of a PCB, you can't deal with overrunning the endstop. In such a case, uncomment this definition.
*/
// #define SLOW_HOMING
/// this is how many steps to suck back the filament by when we stop. set to zero to disable
#define E_STARTSTOP_STEPS 20
/**
Soft axis limits, in mm.
Define them to your machine's size relative to what your host considers to be the origin.
*/
//#define X_MIN 0.0
//#define X_MAX 200.0
//#define Y_MIN 0.0
//#define Y_MAX 200.0
//#define Z_MIN 0.0
//#define Z_MAX 140.0
/** \def E_ABSOLUTE
Some G-Code creators produce relative length commands for the extruder, others absolute ones. G-Code using absolute lengths can be recognized when there are G92 E0 commands from time to time. If you have G92 E0 in your G-Code, define this flag.
This is the startup default and can be changed with M82/M83 while running.
*/
// #define E_ABSOLUTE
/***************************************************************************\
* *
* 2. ACCELERATION *
* *
* IMPORTANT: choose only one! These algorithms choose when to step, trying *
* to use more than one will have undefined and probably *
* disastrous results! *
* *
\***************************************************************************/
/** \def ACCELERATION_REPRAP
acceleration, reprap style.
Each movement starts at the speed of the previous command and accelerates or decelerates linearly to reach target speed at the end of the movement.
*/
// #define ACCELERATION_REPRAP
/** \def ACCELERATION_RAMPING
acceleration and deceleration ramping.
Each movement starts at (almost) no speed, linearly accelerates to target speed and decelerates just in time to smoothly stop at the target. alternative to ACCELERATION_REPRAP
*/
#define ACCELERATION_RAMPING
/** \def ACCELERATION
how fast to accelerate when using ACCELERATION_RAMPING.
given in mm/s^2, decimal allowed, useful range 1. to 10'000. Start with 10. for milling (high precision) or 1000. for printing
*/
#define ACCELERATION 1000.
/** \def ACCELERATION_TEMPORAL
temporal step algorithm
This algorithm causes the timer to fire when any axis needs to step, instead of synchronising to the axis with the most steps ala bresenham.
This algorithm is not a type of acceleration, and I haven't worked out how to integrate acceleration with it.
However it does control step timing, so acceleration algorithms seemed appropriate
The Bresenham algorithm is great for drawing lines, but not so good for steppers - In the case where X steps 3 times to Y's two, Y experiences massive jitter as it steps in sync with X every 2 out of 3 X steps. This is a worst-case, but the problem exists for most non-45/90 degree moves. At higher speeds, the jitter /will/ cause position loss and unnecessary vibration.
This algorithm instead calculates when a step occurs on any axis, and sets the timer to that value.
// TODO: figure out how to add acceleration to this algorithm
*/
// #define ACCELERATION_TEMPORAL
/***************************************************************************\
* *
* 3. PINOUTS *
* *
\***************************************************************************/
/*
Machine Pin Definitions
- make sure to avoid duplicate usage of a pin
- comment out pins not in use, as this drops the corresponding code and makes operations faster
*/
//#include "arduino.h"
/** \def USE_INTERNAL_PULLUPS
internal pullup resistors
the ATmega has internal pullup resistors on it's input pins which are counterproductive with the commonly used eletronic endstops, so they should be switched off. For other endstops, like mechanical ones, you may want to uncomment this.
*/
//#define USE_INTERNAL_PULLUPS
/*
user defined pins
adjust to suit your electronics,
or adjust your electronics to suit this
*/
#define X_STEP_PIN 0//AIO0
#define X_DIR_PIN 0//AIO1
#define X_MIN_PIN GPIO_Pin_1
#define X_MAX_PIN GPIO_Pin_2
#define X_MAX_GPIO GPIOC
#define X_MIN_GPIO GPIOC
//#define X_ENABLE_PIN xxxx
//#define X_INVERT_DIR
//#define X_INVERT_MIN
//#define X_INVERT_MAX
//#define X_INVERT_ENABLE
#define Y_STEP_PIN 0//AIO3
#define Y_DIR_PIN 0//AIO4
#define Y_MIN_PIN GPIO_Pin_3
#define Y_MAX_PIN GPIO_Pin_10
#define Y_MAX_GPIO GPIOC
#define Y_MIN_GPIO GPIOC
//#define Y_ENABLE_PIN xxxx
//#define Y_INVERT_DIR
//#define Y_INVERT_MIN
//#define Y_INVERT_MAX
//#define Y_INVERT_ENABLE
#define Z_STEP_PIN 0//DIO2
#define Z_DIR_PIN 0//DIO3
//#define Z_MIN_PIN GPIO_Pin_11
//#define Z_MAX_PIN GPIO_Pin_12
//#define Z_MAX_GPIO GPIOC
//#define Z_MIN_GPIO GPIOC
//#define Z_ENABLE_PIN xxxx
//#define Z_INVERT_DIR
//#define Z_INVERT_MIN
//#define Z_INVERT_MAX
//#define Z_INVERT_ENABLE
#define E_STEP_PIN 0//DIO7
#define E_DIR_PIN 0//DIO8
//#define E_ENABLE_PIN xxxx
//#define E_INVERT_DIR
//#define E_INVERT_ENABLE
#define PS_ON_PIN 0//DIO9
//#define STEPPER_ENABLE_PIN xxxx
//#define STEPPER_INVERT_ENABLE
/***************************************************************************\
* *
* 4. TEMPERATURE SENSORS *
* *
\***************************************************************************/
/**
TEMP_HYSTERESIS: actual temperature must be target +/- hysteresis before target temperature can be achieved.
Unit is degree Celsius.
*/
#define TEMP_HYSTERESIS 5
/**
TEMP_RESIDENCY_TIME: actual temperature must be close to target for this long before target is achieved
temperature is "achieved" for purposes of M109 and friends when actual temperature is within [hysteresis] of target for [residency] seconds
*/
#define TEMP_RESIDENCY_TIME 60
/// which temperature sensors are you using? List every type of sensor you use here once, to enable the appropriate code. Intercom is the gen3-style separate extruder board.
// #define TEMP_MAX6675
#define TEMP_THERMISTOR
// #define TEMP_AD595
// #define TEMP_PT100
// #define TEMP_INTERCOM
// #define TEMP_NONE
/***************************************************************************\
* *
* Define your temperature sensors here. One line for each sensor, only *
* limited by the number of available ATmega pins. *
* *
* For a GEN3 set temp_type to TT_INTERCOM and temp_pin to 0. *
* *
* Types are same as TEMP_ list above - TT_MAX6675, TT_THERMISTOR, TT_AD595, *
* TT_PT100, TT_INTERCOM, TT_NONE. See list in temp.c. *
* *
* The "additional" field is used for TT_THERMISTOR only. It defines the *
* name of the table(s) in ThermistorTable.h to use. Typically, this is *
* THERMISTOR_EXTRUDER for the first or only table, or THERMISTOR_BED for *
* the second table. See also early in ThermistorTable.{single|double}.h. *
* *
\***************************************************************************/
#ifndef DEFINE_TEMP_SENSOR
#define DEFINE_TEMP_SENSOR(...)
#endif
#define THERMISTOR_EXTRUDER 1
#define HEATER_extruder 0
#define HEATER_bed 1
// name type pin additional
/*changes ftom tcup:
* I store all ADC data in ADC_results array
* The order of data in this array depends on how regular channels are
* configured in hwd_cfg file
* So we'll keep index of this array instead of pin
* name type arr_index additional
*/
DEFINE_TEMP_SENSOR(extruder, TT_THERMISTOR, 0, THERMISTOR_EXTRUDER)
DEFINE_TEMP_SENSOR(bed, TT_THERMISTOR, 1, THERMISTOR_EXTRUDER)
// "noheater" is a special name for a sensor which doesn't have a heater.
// Use "M105 P#" to read it, where # is a zero-based index into this list.
// DEFINE_TEMP_SENSOR(noheater, TT_THERMISTOR, 1, 0)
/***************************************************************************\
* *
* 5. HEATERS *
* *
\***************************************************************************/
/** \def HEATER_SANITY_CHECK
check if heater responds to changes in target temperature, disable and spit errors if not
largely untested, please comment in forum if this works, or doesn't work for you!
*/
// #define HEATER_SANITY_CHECK
/***************************************************************************\
* *
* Define your heaters here *
* *
* If your heater isn't on a PWM-able pin, set heater_pwm to zero and we'll *
* use bang-bang output. Note that PID will still be used *
* *
* See Appendix 8 at the end of this file for PWMable pin mappings *
* *
* If a heater isn't attached to a temperature sensor above, it can still be *
* controlled by host but otherwise is ignored by firmware *
* *
* To attach a heater to a temp sensor above, simply use exactly the same *
* name - copy+paste is your friend *
* *
* Some common names are 'extruder', 'bed', 'fan', 'motor' *
* *
* A milling spindle can also be defined as a heater. Attach it to a *
* temperature sensor of TT_NONE, then you can control the spindle's rpm *
* via temperature commands. M104 S1..255 for spindle on, M104 S0 for off. *
* *
\***************************************************************************/
#ifndef DEFINE_HEATER
#define DEFINE_HEATER(...)
#endif
#define PB3 0
#define PB4 0
// name port
//DEFINE_HEATER(extruder, PB3)
//DEFINE_HEATER(bed, PB4)
// DEFINE_HEATER(fan, PINB4)
// DEFINE_HEATER(chamber, PIND7)
// DEFINE_HEATER(motor, PIND6)
/// and now because the c preprocessor isn't as smart as it could be,
/// uncomment the ones you've listed above and comment the rest.
/// NOTE: these are used to enable various capability-specific chunks of code, you do NOT need to create new entries unless you are adding new capabilities elsewhere in the code!
/// so if you list a bed above, uncomment HEATER_BED, but if you list a chamber you do NOT need to create HEATED_CHAMBER
/// I have searched high and low for a way to make the preprocessor do this for us, but so far I have not found a way.
#define HEATER_EXTRUDER HEATER_extruder
#define HEATER_BED HEATER_bed
// #define HEATER_FAN HEATER_fan
// #define HEATER_CHAMBER HEATER_chamber
// #define HEATER_MOTOR HEATER_motor
/***************************************************************************\
* *
* 6. COMMUNICATION OPTIONS *
* *
\***************************************************************************/
/** \def REPRAP_HOST_COMPATIBILITY
RepRap Host changes it's communications protocol from time to time and intentionally avoids backwards compatibility. Set this to the date the source code of your Host was fetched from RepRap's repository, which is likely also the build date.
See the discussion on the reprap-dev mailing list from 11 Oct. 2010.
Undefine it for best human readability, set it to an old date for compatibility with hosts before August 2010
*/
// #define REPRAP_HOST_COMPATIBILITY 19750101
// #define REPRAP_HOST_COMPATIBILITY 20100806
// #define REPRAP_HOST_COMPATIBILITY 20110509
// #define REPRAP_HOST_COMPATIBILITY <date of next RepRap Host compatibility break>
/**
Baud rate for the connection to the host. Usually 115200, other common values are 19200, 38400 or 57600.
*/
#define BAUD 115200
/** \def XONXOFF
Xon/Xoff flow control.
Redundant when using RepRap Host for sending GCode, but mandatory when sending GCode files with a plain terminal emulator, like GtkTerm (Linux), CoolTerm (Mac) or HyperTerminal (Windows).
Can also be set in Makefile
*/
// #define XONXOFF
/***************************************************************************\
* *
* 7. MISCELLANEOUS OPTIONS *
* *
\***************************************************************************/
/** \def DEBUG
DEBUG
enables /heaps/ of extra output, and some extra M-codes.
WARNING: this WILL break most host-side talkers that expect particular responses from firmware such as reprap host and replicatorG
use with serial terminal or other suitable talker only.
*/
// #define DEBUG
/** \def BANG_BANG
BANG_BANG
drops PID loop from heater control, reduces code size significantly (1300 bytes!)
may allow DEBUG on '168
*/
// #define BANG_BANG
/** \def BANG_BANG_ON
BANG_BANG_ON
PWM value for 'on'
*/
// #define BANG_BANG_ON 200
/** \def BANG_BANG_OFF
BANG_BANG_OFF
PWM value for 'off'
*/
// #define BANG_BANG_OFF 45
/**
move buffer size, in number of moves
note that each move takes a fair chunk of ram (69 bytes as of this writing) so don't make the buffer too big - a bigger serial readbuffer may help more than increasing this unless your gcodes are more than 70 characters long on average.
however, a larger movebuffer will probably help with lots of short consecutive moves, as each move takes a bunch of math (hence time) to set up so a longer buffer allows more of the math to be done during preceding longer moves
*/
#define MOVEBUFFER_SIZE 8
/** \def DC_EXTRUDER
DC extruder
If you have a DC motor extruder, configure it as a "heater" above and define this value as the index or name. You probably also want to comment out E_STEP_PIN and E_DIR_PIN in the Pinouts section above.
*/
// #define DC_EXTRUDER HEATER_motor
// #define DC_EXTRUDER_PWM 180
/** \def USE_WATCHDOG
Teacup implements a watchdog, which has to be reset every 250ms or it will reboot the controller. As rebooting (and letting the GCode sending application trying to continue the build with a then different Home point) is probably even worse than just hanging, and there is no better restore code in place, this is disabled for now.
*/
// #define USE_WATCHDOG
/**
analog subsystem stuff
REFERENCE - which analog reference to use. see analog.h for choices
*/
#define REFERENCE REFERENCE_AVCC
/** \def STEP_INTERRUPT_INTERRUPTIBLE
this option makes the step interrupt interruptible (nested).
this should help immensely with dropped serial characters, but may also make debugging infuriating due to the complexities arising from nested interrupts
\note disable this option if you're using a '168 or for some reason your ram usage is above 90%. This option hugely increases likelihood of stack smashing.
*/
#define STEP_INTERRUPT_INTERRUPTIBLE 1
/**
temperature history count. This is how many temperature readings to keep in order to calculate derivative in PID loop
higher values make PID derivative term more stable at the expense of reaction time
*/
#define TH_COUNT 8
/** \def FAST_PWM
Teacup offers two PWM frequencies, 76(61) Hz and 78000(62500) Hz on a 20(16) MHz electronics. The faster one is the default, as it's what most other firmwares do. It can make the heater MOSFETs pretty hot, though.
Comment this option out if your MOSFETs overheat. Drawback is, in a quiet environment you might notice the heaters and your power supply humming, then.
*/
#define FAST_PWM
/// this is the scaling of internally stored PID values. 1024L is a good value
#define PID_SCALE 1024L
/** \def ENDSTOP_STEPS
number of steps to run into the endstops intentionally
As Endstops trigger false alarm sometimes, Teacup debounces them by counting a number of consecutive positives. Valid range is 1...255. Use 4 or less for reliable endstops, 8 or even more for flaky ones.
*/
#define ENDSTOP_STEPS 4
/***************************************************************************\
* *
* 8. APPENDIX A - PWMABLE PINS AND MAPPINGS *
* *
* *
* list of PWM-able pins and corresponding timers *
* timer1 is used for step timing so don't use OC1A/OC1B *
* they are omitted from this listing for that reason *
* *
* For the atmega168/328, timer/pin mappings are as follows *
* *
* OCR0A - PD6 - DIO6 *
* OCR0B - PD5 - DIO5 *
* OCR2A - PB3 - DIO11 *
* OCR2B - PD3 - DIO3 *
* *
* For the atmega644, timer/pin mappings are as follows *
* *
* OCR0A - PB3 - DIO3 *
* OCR0B - PB4 - DIO4 *
* OCR2A - PD7 - DIO15 *
* OCR2B - PD6 - DIO14 *
* *
* For the atmega1280, timer/pin mappings are as follows *
* *
* OCR0A - PB7 - DIO13 *
* OCR0B - PG5 - DIO4 *
* OCR2A - PB4 - DIO10 *
* OCR2B - PH6 - DIO9 *
* OCR3AL - PE3 - DIO5 *
* OCR3BL - PE4 - DIO2 *
* OCR3CL - PE5 - DIO3 *
* OCR4AL - PH3 - DIO6 *
* OCR4BL - PH4 - DIO7 *
* OCR4CL - PH5 - DIO8 *
* OCR5AL - PL3 - DIO46 *
* OCR5BL - PL4 - DIO45 *
* OCR5CL - PL5 - DIO44 *
* *
\***************************************************************************/