forked from jzhugithub/object_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection_image.py
131 lines (112 loc) · 5.38 KB
/
object_detection_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#! /usr/bin/env python
# -*- coding=utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import tensorflow as tf
from matplotlib import pyplot as plt
import sys
# Add object_detection to system path
OBJECT_DETECTION_PATH = '/home/zj/my_workspace/object_detection/object_detection'
sys.path.append(OBJECT_DETECTION_PATH)
# Object detection imports
from utils import label_map_util
from utils import visualization_utils as vis_util
class DetectImage(object):
category_index = 'index'
sess = 'sess'
# graph input and output
image_tensor = 'Tensor'
# Each box represents a part of the image where a particular object was detected.
detection_boxes = 'Tensor'
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = 'Tensor'
detection_classes = 'Tensor'
num_detections = 'Tensor'
def __init__(self, PATH_TO_CKPT='.pb', PATH_TO_LABELS='.pbtxt', NUM_CLASSES=-1):
'''
Load category_index, load graph, run sess
:param PATH_TO_CKPT:
Path to frozen detection graph. This is the actual model that is used for the object detection.
:param PATH_TO_LABELS:
List of the strings that is used to add correct label for each box.
:param NUM_CLASSES:
Number of class for model to detect
'''
if not os.path.exists(PATH_TO_CKPT):
print('PATH_TO_CKPT not exist')
return
if not os.path.exists(PATH_TO_LABELS):
print('PATH_TO_LABELS not exist')
return
# Set category_index
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)
# Load a (frozen) Tensorflow model into memory.
print('Load graph')
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Open graph and sess
self.sess = tf.Session(graph=detection_graph)
# Definite input and output Tensors for detection_graph
self.image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
self.detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
self.detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
self.detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = detection_graph.get_tensor_by_name('num_detections:0')
def __del__(self):
self.sess.close()
def run_detect(self, image_np):
'''
run detect on a image
:param image_np: image to detect
:return: image with result, detection_boxes, detection_scores, detection_classes, num_detections
'''
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = self.sess.run(
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
self.category_index,
use_normalized_coordinates=True,
line_thickness=8)
return image_np, boxes, scores, classes, num
if __name__ == '__main__':
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = os.path.join(OBJECT_DETECTION_PATH, 'ssd_mobilenet_v1_coco_11_06_2017/frozen_inference_graph.pb')
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join(OBJECT_DETECTION_PATH, 'data/mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Create DetectImage class
di = DetectImage(PATH_TO_CKPT, PATH_TO_LABELS, NUM_CLASSES)
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
PATH_TO_TEST_IMAGES_DIR = os.path.join(OBJECT_DETECTION_PATH, 'test_images')
TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3)]
import skimage.io
for image_path in TEST_IMAGE_PATHS:
image_np = skimage.io.imread(image_path)
image_np = di.run_detect(image_np)[0]
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.show()