From d906ac033ce46c6013bd5845f037b635c444a8f3 Mon Sep 17 00:00:00 2001 From: "sucbin.cho" Date: Wed, 27 Feb 2019 23:54:54 +0900 Subject: [PATCH] Create CSC_BCSC_analysis-BC_Epithelial_cell_data.R --- CSC_BCSC_analysis-BC_Epithelial_cell_data.R | 118 ++++++++++++++++++++ 1 file changed, 118 insertions(+) create mode 100644 CSC_BCSC_analysis-BC_Epithelial_cell_data.R diff --git a/CSC_BCSC_analysis-BC_Epithelial_cell_data.R b/CSC_BCSC_analysis-BC_Epithelial_cell_data.R new file mode 100644 index 0000000..66c7352 --- /dev/null +++ b/CSC_BCSC_analysis-BC_Epithelial_cell_data.R @@ -0,0 +1,118 @@ +start on 25Feb +BC_Epithelial_cell_data + +library(Seurat) +library(ggplot2) +library(RColorBrewer) + + +setwd('/storage2/Project/CSC/10X/DGIST_data02') +DGIST=readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/EpithelialCells_SeuratSet.rds") +#BCSC_meta$ = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/Epithelial_metadata.rds") +#BCSC_raw = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/Epithelial_Rawcount.rds") +#BCSC_norm = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/Epithelial_normalizedExprs.rds") +DGIST@assays DGIST@active.ident DGIST@reductions DGIST@version +DGIST@meta.data DGIST@graphs DGIST@project.name DGIST@commands +DGIST@active.assay DGIST@neighbors DGIST@misc DGIST@tools + +pdf("DGIST_data02_BCSC_tsne.pdf") +DimPlot(DGIST,reduction = "tsne") +dev.off() + + + +#윤정교 교수님 wnt signal +target = 'RHF43' + +pdf(paste0("dr.Yoon_wnt_",target,".pdf")) +cols <- brewer.pal(9,"YlOrRd") +df = data.frame(x=DGIST@reductions$tsne@cell.embeddings[, "tSNE_1"], + y=DGIST@reductions$tsne@cell.embeddings[, "tSNE_2"], + expression=DGIST@assays$RNA@scale.data[target,]) +ggplot(df,aes(x=x, y=y, colour=expression)) + + geom_point(size=1) + + scale_colour_gradientn(colours = cols ) + + ylab("Component 2") + + xlab("Component 1") + + theme_bw() + + theme(text = element_text(size=20), + panel.grid.major=element_blank(), + panel.grid.minor=element_blank(), + axis.line=element_line(size=1), + axis.ticks=element_line(size=1), + legend.text=element_text(size=20), + legend.title=element_blank(), + legend.key=element_blank(), + axis.text.x = element_text(size=20) + )+ ggtitle(paste0("Wnt signal : ",target)) +dev.off() + +#bulkRNA-seq deconvolution 비교 +#cluster별 variable gene 찾고 CIBERSORT, Xcell에 대입 +HP_raw = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Hematopoietic_cell_data/Hematopoietic_Rawcount.rds") +HP_norm = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Hematopoietic_cell_data/Hematopoietic_normalizedExprs.rds") +HP_meta = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Hematopoietic_cell_data/Hematopoietic_metadata.rds") +table(HP_meta$cell_label_details) + B_cell Bone_marrow_cells CMP + 3017 17 10 + Dendritic Erythroblast GMP + 4322 6 34 +Haematopoietic_stem_cells Macrophage Monocyte + 191 4673 8461 + Myelocyte Neutrophil NK_cell + 339 1183 3905 + Pro-Myelocyte T_cell + 12 34579 + +#다쓰면 데이터 너무커서 CIBERSORT에 안올라감 1/8 = 7593 CELL 정도 써야함 (500개이상이면 많은거) +#500개 random sampling +#bulkRNA에서 쓴 gene만 보자 +bulk = read.table(file="/storage2/Project/CSC/RNA/03_Deconvolution/CSC_RNA_TPM_rm0_HUGO_rmdup.txt", header=TRUE, stringsAsFactors=FALSE) +gene <- bulk$external_gene_name + +#CIBERSORT_reference_sample_file +HP_raw_non0 <- as.matrix(HP_raw[Matrix::rowSums(HP_raw)>0,]) +#write.table(HP_raw_non0,'/storage2/Project/CSC/10X/DGIST_data02/ref_sample.txt',sep = "\t", row.names=TRUE, col.names=TRUE) +> dim(HP_raw[Matrix::rowSums(HP_raw)>0,]) +[1] 35126 60749 +> dim(HP_raw) +[1] 36826 60749 +HP_raw_non0_reduced <- HP_raw_non0[which(rownames(HP_raw_non0)%in%gene),which(colnames(HP_raw_non0) %in% cell)] +> dim(HP_raw_non0_reduced) +[1] 26008 4109 +write.table(HP_raw_non0_reduced,'/storage2/Project/CSC/10X/DGIST_data02/ref_sample_reduced.txt',sep = "\t", row.names=TRUE, col.names=TRUE) + + +#CIBERSORT_phenotye_file +HP_ph <- matrix(,nrow=14,ncol=60749) +rownames(HP_ph) <- c("T_cell","Monocyte","Macrophage","B_cell","Dendritic","NK_cell","GMP","CMP","Neutrophil","Haematopoietic_stem_cells","Bone_marrow_cells","Erythroblast","Myelocyte","Pro-Myelocyte") +colnames(HP_ph) <- colnames(HP_raw_non0) +for(i in 1:ncol(HP_ph)){ + cell <- colnames(HP_ph)[i] + celltype <- HP_meta[cell,"cell_label_details"] + HP_ph[celltype,cell] = 1 +} +HP_ph[is.na(HP_ph)] <- 2 +#write.table(HP_ph,'/storage2/Project/CSC/10X/DGIST_data02/pheno_sample.txt',sep = "\t", row.names=TRUE, col.names=FALSE) +#reduce tcell +tcell_list<-sample(colnames(HP_ph[,HP_ph["T_cell",]==1]),500) +B_list<-sample(colnames(HP_ph[,HP_ph["B_cell",]==1]),500) +DC_list<-sample(colnames(HP_ph[,HP_ph["Dendritic",]==1]),500) +Macro_list<-sample(colnames(HP_ph[,HP_ph["Macrophage",]==1]),500) +Mono_list<-sample(colnames(HP_ph[,HP_ph["Monocyte",]==1]),500) +Neutro_list<-sample(colnames(HP_ph[,HP_ph["Neutrophil",]==1]),500) +NK_list<-sample(colnames(HP_ph[,HP_ph["NK_cell",]==1]),500) + +BM_list<-colnames(HP_ph[,HP_ph["Bone_marrow_cells",]==1]) +CMP_list<-colnames(HP_ph[,HP_ph["CMP",]==1]) +Erythro_list<-colnames(HP_ph[,HP_ph["Erythroblast",]==1]) +GMP_list<-colnames(HP_ph[,HP_ph["GMP",]==1]) +Haema_list<-colnames(HP_ph[,HP_ph["Haematopoietic_stem_cells",]==1]) +Myelo_list<-colnames(HP_ph[,HP_ph["Myelocyte",]==1]) +ProM_list<-colnames(HP_ph[,HP_ph["Pro-Myelocyte",]==1]) + +cell <- union(union(union(union(union(union(union(union(union(union(union(union(union(tcell_list,B_list),DC_list),Macro_list),Mono_list),Neutro_list),NK_list),BM_list),CMP_list),Erythro_list),GMP_list),Haema_list),Myelo_list),ProM_list) +#4109 cells + +HP_ph_reduced<-HP_ph[,which(colnames(HP_ph) %in% cell)] +write.table(HP_ph_reduced,'/storage2/Project/CSC/10X/DGIST_data02/pheno_sample_reduced.txt',sep = "\t", row.names=TRUE, col.names=FALSE) \ No newline at end of file